Technological change (TC) or technological development is the overall process of invention, innovation and diffusion of technology or processes.From [[The New Palgrave Dictionary of technical change" by S. Metcalfe. • "biased and biased technological change" by Peter L. Rousseau. • "skill-biased technical change" by Giovanni L. Violante. In essence, technological change covers the invention of technologies (including processes) and their commercialization or release as open source via research and development (producing emerging technologies), the continual improvement of technologies (in which they often become less expensive), and the diffusion of technologies throughout industry or society (which sometimes involves disruption and convergence). In short, technological change is based on both better and more technology.
In its earlier days, technological change was illustrated with the 'Linear Model of Innovation', which has now been largely discarded to be replaced with a model of technological change that involves innovation at all stages of research, development, diffusion, and use. When speaking about "modeling technological change," this often means the process of innovation. This process of continuous improvement is often modeled as a curve depicting decreasing costs over time (for instance fuel cell which have become cheaper every year). TC is also often modelled using a learning curve, ex.: Ct=C0 * Xt^-b
Technological change itself is often included in other models (e.g. climate change models) and was often taken as an exogenous factor. These days TC is more often included as an endogenous factor. This means that it is taken as something you can influence. Today, there are sectors that maintain the policy which can influence the speed and direction of technological change. For example, proponents of the Induced Technological Change hypothesis state that policymakers can steer the direction of technological advances by influencing relative factor prices and this can be demonstrated in the way climate policies impact the use of fossil fuel energy, specifically how it becomes relatively more expensive.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course teaches the fundamentals of technologies for development (Development Engineering) to design, pilot, and deploy appropriate, affordable and robust technologies to address sustainable devel
This year, the course will be held at Technical University of Denmark, Lyngby/Copenhagen,
8 to 12 May 2023.
Please contact the EDMT Administration for more information.
Artificial intelligence, big data, and advances in computing power have triggered a technological revolution that may have enormous bearing on the workplace and the labor market. This course provides
Delves into the Montreux Jazz Digital Project, covering heritage collection transformation, innovation, immersive experiences, and ongoing research projects.
A technological revolution is a period in which one or more technologies is replaced by another novel technology in a short amount of time. It is an era of accelerated technological progress characterized by innovations whose rapid application and diffusion typically cause an abrupt change in society. A technological revolution generally increases productivity and efficiency. It may involve material or ideological changes caused by the introduction of a device or system.
The history of technology is the history of the invention of tools and techniques and is one of the categories of world history. Technology can refer to methods ranging from as simple as stone tools to the complex genetic engineering and information technology that has emerged since the 1980s. The term technology comes from the Greek word techne, meaning art and craft, and the word logos, meaning word and speech. It was first used to describe applied arts, but it is now used to describe advancements and changes which affect the environment around us.
The productivity-improving technologies are the technological innovations that have historically increased productivity. Productivity is often measured as the ratio of (aggregate) output to (aggregate) input in the production of goods and services. Productivity is increased by lowering the amount of labor, capital, energy or materials that go into producing any given amount of economic goods and services. Increases in productivity are largely responsible for the increase in per capita living standards.
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Emerging technologies such as artificial intelligence, gene editing, nanotechnology, neurotechnology and robotics, which were originally unrelated or separated, are becoming more closely integrated. Consequently, the boundaries between the physical-biologi ...
Springer2024
,
Unraveling the complexities of brain function, which is crucial for advancing human health, remains a grand challenge. This endeavor demands precise monitoring of small molecules such as neurotransmitters, the chemical messengers in the brain. In this Pers ...
2024
The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...