The quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann.
The problem models the following real-life problem:
There are a set of n facilities and a set of n locations. For each pair of locations, a distance is specified and for each pair of facilities a weight or flow is specified (e.g., the amount of supplies transported between the two facilities). The problem is to assign all facilities to different locations with the goal of minimizing the sum of the distances multiplied by the corresponding flows.
Intuitively, the cost function encourages facilities with high flows between each other to be placed close together.
The problem statement resembles that of the assignment problem, except that the cost function is expressed in terms of quadratic inequalities, hence the name.
The formal definition of the quadratic assignment problem is as follows:
Given two sets, P ("facilities") and L ("locations"), of equal size, together with a weight function w : P × P → R and a distance function d : L × L → R. Find the bijection f : P → L ("assignment") such that the cost function:
is minimized.
Usually weight and distance functions are viewed as square real-valued matrices, so that the cost function is written down as:
In matrix notation:
where is the set of permutation matrices, is the weight matrix and is the distance matrix.
The problem is NP-hard, so there is no known algorithm for solving this problem in polynomial time, and even small instances may require long computation time. It was also proven that the problem does not have an approximation algorithm running in polynomial time for any (constant) factor, unless P = NP. The travelling salesman problem (TSP) may be seen as a special case of QAP if one assumes that the flows connect all facilities only along a single ring, all flows have the same non-zero (constant) value and all distances are equal to the respective distances of the TSP instance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The weapon target assignment problem (WTA) is a class of combinatorial optimization problems present in the fields of optimization and operations research. It consists of finding an optimal assignment of a set of weapons of various types to a set of targets in order to maximize the total expected damage done to the opponent. The basic problem is as follows: There are a number of weapons and a number of targets. The weapons are of type . There are available weapons of type . Similarly, there are targets, each with a value of .
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.
The travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP.
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
Informs2024
,
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...
We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...