In group theory, the term pariah was introduced by Robert Griess in to refer to the six sporadic simple groups which are not subquotients of the monster group. The twenty groups which are subquotients, including the monster group itself, he dubbed the happy family. For example, the orders of J4 and the Lyons Group Ly are divisible by 37. Since 37 does not divide the order of the monster, these cannot be subquotients of it; thus J4 and Ly are pariahs. Three other sporadic groups were also shown to be pariahs by Griess in 1982, and the Janko Group J1 was shown to be the final pariah by Robert A. Wilson in 1986. The complete list is shown below.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.