Gravel (ˈɡrævəl) is a loose aggregation of rock fragments. Gravel occurs naturally on Earth as a result of sedimentary and erosive geological processes; it is also produced in large quantities commercially as crushed stone.
Gravel is classified by particle size range and includes size classes from granule- to boulder-sized fragments. In the Udden-Wentworth scale gravel is categorized into granular gravel () and pebble gravel (). ISO 14688 grades gravels as fine, medium, and coarse, with ranges for fine and for coarse. One cubic metre of gravel typically weighs about , or one cubic yard weighs about .
Gravel is an important commercial product, with a number of applications. Almost half of all gravel production is used as aggregate for concrete. Much of the rest is used for road construction, either in the road base or as the road surface (with or without asphalt or other binders.) Naturally occurring porous gravel deposits have a high hydraulic conductivity, making them important aquifers.
Colloquially, the term gravel is often used to describe a mixture of different size pieces of stone mixed with sand and possibly some clay. The American construction industry distinguishes between gravel (a natural material) and crushed stone (produced artificially by mechanical crushing of rock.)
The technical definition of gravel varies by region and by area of application. Many geologists define gravel simply as loose rounded rock particles over in diameter, without specifying an upper size limit. Gravel is sometimes distinguished from rubble, which is loose rock particles in the same size range but angular in shape. The Udden-Wentworth scale, widely used by geologists in the US, defines granular gravel as particles with a size from and pebble gravel as particles with a size from . This corresponds to all particles with sizes between coarse sand and cobbles.
The U.S. Department of Agriculture and the Soil Science Society of America define gravel as particles from in size, while the German scale (Atterburg) defines gravel as particles from in size.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class of soil or soil type; i.e., a soil containing more than 85 percent sand-sized particles by mass. The composition of sand varies, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz.
In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's outer solid layer, the crust, and most of its interior, except for the liquid outer core and pockets of magma in the asthenosphere. The study of rocks involves multiple subdisciplines of geology, including petrology and mineralogy.
Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel when dry, and lacks plasticity when wet. Silt also can be felt by the tongue as granular when placed on the front teeth (even when mixed with clay particles). Silt is a common material, making up 45% of average modern mud.
Le cours traite les interactions entre l'hydraulique, le transport solide par charriage et l'espace cours d'eau à l'origine de la morphologie et de la richesse des habitats. La théorie de régime est p
This course provides the bases to understand material and energy production and consumption processes. Students learn how to develop a material flow analysis and apply it to cases of resource manageme
Covers the concept of transfer coefficient in Material Flow Analysis and its application in analyzing glass recycling.
Explores the assessment and classification of streams using ecological indices and emphasizes the importance of protecting and restoring river systems.
Explores the design and impact of riprap ramps for river restoration, emphasizing fish migration and ecological considerations.
In the riverine environment, the riverscape, sediment and flow regime are essential drivers for natural habitat dynamics. Today, most water courses in Europe are regulated, and their natural dynamics are impaired. Flood releases coupled with the artificial ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Bedload transport often exhibits dual-mode behavior due to interactions of spatiotemporal controlling factors with the migrating three-dimensional bedforms (characterized by the fully developed patterns in the bed, such as alternate bars, pools, and cluste ...