A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.
Typically, morphogens are produced by source cells and diffuse through surrounding tissues in an embryo during early development, such that concentration gradients are set up. These gradients drive the process of differentiation of unspecialised stem cells into different cell types, ultimately forming all the tissues and organs of the body. The control of morphogenesis is a central element in evolutionary developmental biology (evo-devo).
The term was coined by Alan Turing in the paper "The Chemical Basis of Morphogenesis", where he predicted a chemical mechanism for biological pattern formation, decades before the formation of such patterns was demonstrated.
The concept of the morphogen has a long history in developmental biology, dating back to the work of the pioneering Drosophila (fruit fly) geneticist, Thomas Hunt Morgan, in the early 20th century. Lewis Wolpert refined the morphogen concept in the 1960s with the French flag model, which described how a morphogen could subdivide a tissue into domains of different target gene expression (corresponding to the colours of the French flag). This model was championed by the leading Drosophila biologist, Peter Lawrence. Christiane Nüsslein-Volhard was the first to identify a morphogen, Bicoid, one of the transcription factors present in a gradient in the Drosophila syncitial embryo. She was awarded the 1995 Nobel Prize in Physiology and Medicine for her work explaining the morphogenic embryology of the common fruit fly.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
Tissue engineering is an interdisciplinary field that broadly impacts human health. This course provides students an overview of how engineering approaches can be used to investigate and manipulate ce
The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway also has roles in the adult. Diseases associated with the malfunction of this pathway include cancer. The Hedgehog signaling pathway is one of the key regulators of animal development and is present in all bilaterians.
Drosophila embryogenesis, the process by which Drosophila (fruit fly) embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.
The French flag model is a conceptual definition of a morphogen, described by Lewis Wolpert in the 1960s. A morphogen is defined as a signaling molecule that acts directly on cells (not through serial induction) to produce specific cellular responses dependent on morphogen concentration. During early development, morphogen gradients generate different cell types in distinct spatial order. French flag patterning is often found in combination with others: vertebrate limb development is one of the many phenotypes exhibiting French flag patterning overlapped with a complementary pattern (in this case Turing pattern).
Tissue morphogenesis, homoeostasis and repair require cells to constantly monitor their three-dimensional microenvironment and adapt their behaviours in response to local biochemical and mechanical cues. Yet the mechanical parameters of the cellular microe ...
Understanding how biological matter takes its shape is instrumental to biology, bioengineering, medicine, and bioinspired engineering. Gaining information on the principles of morphogenesis could enable clinicians to correct developmental abnormalities, ev ...
EPFL2023
, ,
The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of ...