The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature.
In a Fermi gas, the lowest occupied state is taken to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically taken to mean the bottom of the conduction band.
The term "Fermi energy" is often used to refer to a different yet closely related concept, the Fermi level (also called electrochemical potential).
There are a few key differences between the Fermi level and Fermi energy, at least as they are used in this article:
The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any temperature.
The Fermi energy is an energy difference (usually corresponding to a kinetic energy), whereas the Fermi level is a total energy level including kinetic energy and potential energy.
The Fermi energy can only be defined for non-interacting fermions (where the potential energy or band edge is a static, well defined quantity), whereas the Fermi level remains well defined even in complex interacting systems, at thermodynamic equilibrium.
Since the Fermi level in a metal at absolute zero is the energy of the highest occupied single particle state,
then the Fermi energy in a metal is the energy difference between the Fermi level and lowest occupied single-particle state, at zero-temperature.
Fermi gas
In quantum mechanics, a group of particles known as fermions (for example, electrons, protons and neutrons) obey the Pauli exclusion principle. This states that two fermions cannot occupy the same quantum state. Since an idealized non-interacting Fermi gas can be analyzed in terms of single-particle stationary states, we can thus say that two fermions cannot occupy the same stationary state. These stationary states will typically be distinct in energy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Starting from a microscopic description, the course introduces to the physics of quantum fluids focusing on basic concepts like Bose-Einstein condensation, superfluidity, and Fermi liquid theory.
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
In classical physics and general chemistry, matter is any substance with mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat.
In astrophysics and condensed matter, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quantum degeneracy pressure. In metals and white dwarf stars, electrons can be modeled as a gas of non-interacting electrons confined to a finite volume. In reality, there are strong electromagnetic forces between the negatively charged electrons.
Electron-rich organocerium complexes (C5Me4H)(3)Ce and [(C5Me5)(2)Ce(ortho-oxa)], with redox potentials E-1/2 = -0.82 V and E-1/2 = -0.86 V versus Fc/Fc(+), respectively, were reacted with fullerene (C-60) in different stoichiometries to obtain molecular m ...
We report measurements of the in-plane thermoelectric power (TEP) for an overdoped (OD) crystal of the single layer cuprate superconductor Tl2Ba2CuO6+x (Tl2201) at several hole concentrations (p), from 300 or 400 K to below the superconducting transition t ...
Bristol2024
, ,
Topological materials have been a main focus of studies in the past decade due to their protected properties that can be exploited for the fabrication of new devices. Among them, Weyl semimetals are a class of topological semimetals with nontrivial linear ...