**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Matter

Summary

In classical physics and general chemistry, matter is any substance with mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.
Usually atoms can be imagined as a nucleus of protons and neutrons, and a surroundin

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (22)

Related publications (100)

Loading

Loading

Loading

Related courses (149)

PHYS-433: Semiconductor physics and light-matter interaction

Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter interaction phenomena in bulk semiconductors such as absorption, spontaneous & stimulated emission.

PHYS-402: Astrophysics IV : observational cosmology

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

CH-410: Physical and chemical analyses of materials

The course relates on the use of electromagnetic (X-Ray) and corpuscular (electrons) radiations for physical and chemical analysis of solid materials.

Aim of this diploma thesis is to approach to kinetic modelling of subsurface hydrochemistry with the program code phreeqc. The reaction considered is the degradation of organic mass and its concomitant reactions. Phreeqc is a program for thermodynamical based equilibrium calculations of geo- and hydrochemistry. Although the degradation of organic matter, and the associated reduction reactions due to the oxidation of organic matter, can be modelled with phreeqc, it does not account for kinetically controlled reactions, whose characteristic feature is the dependency of time. This study focuses on the state of the art of environmental modelling, the thermodynamical based calculation of the degradation of organic matter and on two mathematical approaches to model bacterial degradation of a contaminant, the Monod equation and the Michaelis-Menten approach. Sensitivity analyses of the respective models runs were done. As a result one can see, that the redox chemistry of a natural water depends strongly on the abundance of oxygen and nitrate and, as a matter of course, on the abundance of organic matter. Considering bacterial activity within the degradation process, two basic mathematical formulations have been stated. The Monod equation and the Michaelis-Menten formulation were implemented in a BASIC interpreter in PHREEQC. The sensitivity analyses show, that that a accurate determination of the parameters in laboratory or field is essential. The coupling of kinetically controlled reactions and thermodynamical based equilibrium calculations might lead to auspicious hydrochemical modelling capabilities.

2008Related concepts (281)

Related units (13)

Physics

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Phy

Big Bang

The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolu

General relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current des

Related lectures (298)

Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity both as the string worldsheet theory and through the AdS/CFT correspondence. In recent years major breakthroughs have been made in solving these CFTs through a method called numerical conformal bootstrap. This method uses consistency conditions on the CFT data in order to find and constrain conformal field theories and obtain precise measurements of physical observables. In this thesis we apply the conformal bootstrap to study among others the O(2)- and the ARP^3- models in 3D.
In the first chapter we extend the conventional scalar numerical conformal bootstrap to a mixed system of correlators involving a scalar field charged under a global U(1) symmetry and the associated conserved spin-1 current J. The inclusion of a conserved spinning operator is an important advance in the numerical bootstrap program. Using numerical bootstrap techniques we obtain bounds on new observables not accessible in the usual scalar bootstrap. Concentrating on the O(2) model we extract rigorous bounds on the three-point function coefficient of two currents and the unique relevant scalar singlet, as well as those of two currents and the stress tensor. Using these results, and comparing with a quantum Monte Carlo simulation of the O(2) model conductivity, we give estimates of the thermal one-point function of the relevant singlet and the stress tensor. We also obtain new bounds on operators in various sectors.
In the second chapter we investigate the existence of a second-order phase transition in the ARP^3 model. This model has a global O(4) symmetry and a discrete Z_2 gauge symmetry. It was shown by a perturbative renormalization group analysis that its Landau-Ginzburg-Wilson effective description does not have any stable fixed point, thus disallowing a second-order phase transition. However, it was also shown that lattice simulations contradict this, finding strong evidence for the existence of a second-order phase transition. In this chapter we apply conformal bootstrap methods to the correlator of four scalars t transforming in the traceless symmetric representation of O(4) in order to investigate the existence of this second order phase transition. We find various features that stand out in the region predicted by the lattice data. Moreover, under reasonable assumptions a candidate island can be isolated. We also apply a mixed t-s bootstrap setup in which this island persists. In addition we study the kink-landscape for all representations appearing in the t times t OPE for general N. Among others, we find a new family of kinks in the upper-bound on the dimension of the first scalar operator in the "Box" and "Hook" representations.

Sofia Magkiriadou, Alexis Poncet

The competition between thermal fluctuations and potential forces governs the stability of matter in equilibrium, in particular the proliferation and annihilation of topological defects. However, driving matter out of equilibrium allows for a new class of forces that are neither attractive nor repulsive, but rather transverse. The possibility of activating transverse forces raises the question of how they affect basic principles of material self-organization and control. Here we show that transverse forces organize colloidal spinners into odd elastic crystals crisscrossed by motile dislocations. These motile topological defects organize into a polycrystal made of grains with tunable length scale and rotation rate. The self-kneading dynamics drive super-diffusive mass transport, which can be controlled over orders of magnitude by varying the spinning rate. Simulations of both a minimal model and fully resolved hydrodynamics establish the generic nature of this crystal whorl state. Using a continuum theory, we show that both odd and Hall stresses can destabilize odd elastic crystals, giving rise to a generic state of crystalline active matter. Adding rotations to a material's constituents has far-reaching consequences for continuous control of structures and transport at all scales. The addition of transverse forces to an ensemble of colloidal spinners induces the appearance of odd elastic crystals, featuring self-propelled defects that organize the system into a 'self-kneading' crystal whorl state.