Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
The title supergiant, as applied to a star, does not have a single concrete definition. The term giant star was first coined by Hertzsprung when it became apparent that the majority of stars fell into two distinct regions of the Hertzsprung–Russell diagram. One region contained larger and more luminous stars of spectral types A to M and received the name giant. Subsequently, as they lacked any measurable parallax, it became apparent that some of these stars were significantly larger and more luminous than the bulk, and the term super-giant arose, quickly adopted as supergiant.
Supergiant stars can be identified on the basis of their spectra, with distinctive lines sensitive to high luminosity and low surface gravity. In 1897, Antonia C. Maury had divided stars based on the widths of their spectral lines, with her class "c" identifying stars with the narrowest lines. Although it was not known at the time, these were the most luminous stars. In 1943, Morgan and Keenan formalised the definition of spectral luminosity classes, with class I referring to supergiant stars. The same system of MK luminosity classes is still used today, with refinements based on the increased resolution of modern spectra. Supergiants occur in every spectral class from young blue class O supergiants to highly evolved red class M supergiants. Because they are enlarged compared to main-sequence and giant stars of the same spectral type, they have lower surface gravities, and changes can be observed in their line profiles. Supergiants are also evolved stars with higher levels of heavy elements than main-sequence stars. This is the basis of the MK luminosity system which assigns stars to luminosity classes purely from observing their spectra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
In astronomy, a semiregular variable star, a type of variable star, is a giant or supergiant of intermediate and late (cooler) spectral type showing considerable periodicity in its light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to more than 2000 days, while the shapes of the light curves may be rather different and variable with each cycle. The amplitudes may be from several hundredths to several magnitudes (usually 1-2 magnitudes in the V filter).
Red supergiants (RSGs) are stars with a supergiant luminosity class (Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars. Stars are classified as supergiants on the basis of their spectral luminosity class.
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.
The tip of the red giant branch (TRGB) is an important standard candle for determining luminosity distances. Although several 105 small-amplitude red giant stars (SARGs) have been discovered, variability was previously considered irrelevant for the TRGB as ...
This study focuses on Pristine_180956.78-294759.8 (hereafter P180956, [Fe/H] = -1.95 +/- 0.02), a star selected from the Pristine Inner Galaxy Survey (PIGS), and followed-up with the recently commissioned Gemini High-resolution Optical SpecTrograph (GHOST) ...
Context. Gaia has been in operations since 2014, and two full data releases (DR) have been delivered so far: DR1 in 2016 and DR2 in 2018. The third Gaia data release expands from the early data release (EDR3) in 2020, which contained the five-parameter ast ...