An optical mouse is a computer mouse which uses a light source, typically a light-emitting diode (LED), and a light detector, such as an array of photodiodes, to detect movement relative to a surface. Variations of the optical mouse have largely replaced the older mechanical mouse design, which uses moving parts to sense motion.
The earliest optical mice detected movement on pre-printed mousepad surfaces. Modern optical mice work on most opaque diffusely reflective surfaces like paper, but most of them do not work properly on specularly reflective surfaces like polished stone or transparent surfaces like glass. Optical mice that use dark field illumination can function reliably even on such surfaces.
Mechanical mouse
Though not commonly referred to as optical mice, nearly all mechanical mice tracked movement using LEDs and photodiodes to detect when beams of infrared light did and didn't pass through holes in a pair of incremental rotary encoder wheels (one for left/right, another for forward/back), driven by a rubberized ball. Thus, the primary distinction of “optical mice” is not their use of optics, but their complete lack of moving parts to track mouse movement, instead employing an entirely solid-state system.
The first two optical mice, first demonstrated by two independent inventors in December 1980, had different basic designs:
One of these, invented by Steve Kirsch of MIT and Mouse Systems Corporation, used an infrared LED and a four-quadrant infrared sensor to detect grid lines printed with infrared absorbing ink on a special metallic surface. Predictive algorithms in the CPU of the mouse calculated the speed and direction over the grid. The other type, invented by Richard F. Lyon of Xerox, used a 16-pixel visible-light with integrated motion detection on the same ntype (5 μm) MOS integrated circuit chip, and tracked the motion of light dots in a dark field of a printed paper or similar mouse pad.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
An image sensor or imager is a sensor that detects and conveys information used to form an . It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others.
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons. The package of a photodiode allows light (or infrared or ultraviolet radiation, or X-rays) to reach the sensitive part of the device. The package may include lenses or optical filters. Devices designed for use specially as a photodiode use a PIN junction rather than a p–n junction, to increase the speed of response. Photodiodes usually have a slower response time as their surface area increases.
Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defense, monitoring of industrial and environmental conditions, o ...
Photonic integrated circuits (PICs) are the subject of massive interest due to the range of applications they can provide at a huge scale while building on well-established CMOS technologies. One of the critical parameters defining a technology's maturity ...
EPFL2023
Soft actuators with a function of variable stiffness are beneficial to the improvement of the adaptability of robots, expanding the application areas and environments. We propose a tendon-driven soft bending actuator that can change its stiffness using fib ...