An optical mouse is a computer mouse which uses a light source, typically a light-emitting diode (LED), and a light detector, such as an array of photodiodes, to detect movement relative to a surface. Variations of the optical mouse have largely replaced the older mechanical mouse design, which uses moving parts to sense motion.
The earliest optical mice detected movement on pre-printed mousepad surfaces. Modern optical mice work on most opaque diffusely reflective surfaces like paper, but most of them do not work properly on specularly reflective surfaces like polished stone or transparent surfaces like glass. Optical mice that use dark field illumination can function reliably even on such surfaces.
Mechanical mouse
Though not commonly referred to as optical mice, nearly all mechanical mice tracked movement using LEDs and photodiodes to detect when beams of infrared light did and didn't pass through holes in a pair of incremental rotary encoder wheels (one for left/right, another for forward/back), driven by a rubberized ball. Thus, the primary distinction of “optical mice” is not their use of optics, but their complete lack of moving parts to track mouse movement, instead employing an entirely solid-state system.
The first two optical mice, first demonstrated by two independent inventors in December 1980, had different basic designs:
One of these, invented by Steve Kirsch of MIT and Mouse Systems Corporation, used an infrared LED and a four-quadrant infrared sensor to detect grid lines printed with infrared absorbing ink on a special metallic surface. Predictive algorithms in the CPU of the mouse calculated the speed and direction over the grid. The other type, invented by Richard F. Lyon of Xerox, used a 16-pixel visible-light with integrated motion detection on the same ntype (5 μm) MOS integrated circuit chip, and tracked the motion of light dots in a dark field of a printed paper or similar mouse pad.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
Explore l'histoire, l'architecture et les spécifications des capteurs d'images optiques, y compris les techniques de suppression du bruit et les méthodes de mesure.
Un capteur photographique est un composant électronique photosensible servant à convertir un rayonnement électromagnétique (UV, visible ou IR) en un signal électrique analogique. Ce signal est ensuite amplifié, puis numérisé par un convertisseur analogique-numérique et enfin traité pour obtenir une . Le capteur est donc le composant de base des appareils photo et des caméras numériques, l'équivalent du film (ou pellicule) en photographie argentique.
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
Une photodiode est un composant semi-conducteur ayant la capacité de capter un rayonnement du domaine optique et de le transformer en signal électrique. Comme beaucoup de diodes en électronique elle est constituée d'une jonction PN. Cette configuration de base fut améliorée par l'introduction d'une zone intrinsèque (I) pour constituer la photodiode PIN. En absence de polarisation (appelé mode photovoltaïque) elle crée une tension. En polarisation inverse par une alimentation externe (mode photoampérique), elle crée un courant.
Photonic integrated circuits (PICs) are the subject of massive interest due to the range of applications they can provide at a huge scale while building on well-established CMOS technologies. One of the critical parameters defining a technology's maturity ...
Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defense, monitoring of industrial and environmental conditions, o ...
Soft actuators with a function of variable stiffness are beneficial to the improvement of the adaptability of robots, expanding the application areas and environments. We propose a tendon-driven soft bending actuator that can change its stiffness using fib ...