The mathematical term perverse sheaves refers to a certain associated to a topological space X, which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of Zoghman Mebkhout, gaining more popularity after the (independent) work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (intersection homology of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations (microlocal calculus and holonomic D-modules of Joseph Bernstein, Masaki Kashiwara and Takahiro Kawai). It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of algebraic geometry, topology, analysis and differential equations. They also play an important role in number theory, algebra, and representation theory. The properties characterizing perverse sheaves already appeared in the 75's paper of Kashiwara on the constructibility of solutions of holonomic D-modules.
The name perverse sheaf comes through rough translation of the French "faisceaux pervers". The justification is that perverse sheaves are complexes of sheaves which have several features in common with sheaves: they form an abelian category, they have cohomology, and to construct one, it suffices to construct it locally everywhere. The adjective "pervers" originates in the intersection homology theory, and its origin was explained by .
The Beilinson–Bernstein–Deligne definition of a perverse sheaf proceeds through the machinery of triangulated categories in homological algebra and has a very strong algebraic flavour, although the main examples arising from Goresky–MacPherson theory are topological in nature because the simple objects in the category of perverse sheaves are the intersection cohomology complexes. This motivated MacPherson to recast the whole theory in geometric terms on a basis of Morse theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial. Early major results were the Kashiwara constructibility theorem and Kashiwara index theorem of Masaki Kashiwara.
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to L2 cohomology.
In mathematics, a triangulated category is a with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the of an , as well as the . The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology.
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Explores the construction and properties of morphisms, focusing on effective divisors, isomorphism of semi-groups, and the relationship between sheaves and factorial spaces.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...