Mass-independent isotope fractionation or Non-mass-dependent fractionation (NMD), refers to any chemical or physical process that acts to separate isotopes, where the amount of separation does not scale in proportion with the difference in the masses of the isotopes. Most isotopic fractionations (including typical kinetic fractionations and equilibrium fractionations) are caused by the effects of the mass of an isotope on atomic or molecular velocities, diffusivities or bond strengths. Mass-independent fractionation processes are less common, occurring mainly in photochemical and spin-forbidden reactions. Observation of mass-independently fractionated materials can therefore be used to trace these types of reactions in nature and in laboratory experiments.
The most notable examples of mass-independent fractionation in nature are found in the isotopes of oxygen and sulfur. The first example was discovered by Robert N. Clayton, Toshiko Mayeda, and Lawrence Grossman in 1973, in the oxygen isotopic composition of refractory calcium-aluminium-rich inclusions in the Allende meteorite. The inclusions, thought to be among the oldest solid materials in the Solar System, show a pattern of low 18O/16O and 17O/16O relative to samples from the Earth and Moon. Both ratios vary by the same amount in the inclusions, although the mass difference between 18O and 16O is almost twice as large as the difference between 17O and 16O. Originally this was interpreted as evidence of incomplete mixing of 16O-rich material (created and distributed by a large star in a supernova) into the Solar nebula. However, recent measurement of the oxygen-isotope composition of the Solar wind, using samples collected by the Genesis spacecraft, shows that the most 16O-rich inclusions are close to the bulk composition of the solar system. This implies that Earth, the Moon, Mars, and asteroids all formed from 18O- and 17O-enriched material. Photodissociation of carbon monoxide in the Solar nebula has been proposed to explain this isotope fractionation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Equilibrium isotope fractionation is the partial separation of isotopes between two or more substances in chemical equilibrium. Equilibrium fractionation is strongest at low temperatures, and (along with kinetic isotope effects) forms the basis of the most widely used isotopic paleothermometers (or climate proxies): D/H and 18O/16O records from ice cores, and 18O/16O records from calcium carbonate. It is thus important for the construction of geologic temperature records.
Kinetic fractionation is an isotopic fractionation process that separates stable isotopes from each other by their mass during unidirectional processes. Biological processes are generally unidirectional and are very good examples of "kinetic" isotope reactions. All organisms preferentially use lighter isotopic species, because "energy costs" are lower, resulting in a significant fractionation between the substrate (heavier) and the biologically mediated product (lighter).
Isotope fractionation describes fractionation processes that affect the relative abundance of isotopes, phenomena which are taken advantage of in isotope geochemistry and other fields. Normally, the focus is on stable isotopes of the same element. Isotopic fractionation can be measured by isotope analysis, using isotope-ratio mass spectrometry or cavity ring-down spectroscopy to measure ratios of isotopes, an important tool to understand geochemical and biological systems.
The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...
Discusses the distribution of organics in multiphase systems and demonstrates scenarios involving air contaminants, Koc estimation, and contaminant retardation in groundwater.
Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionatio ...
Correlated errors of experimental data are a common but often neglected problem in physical sciences. Various tools are provided here for thorough propagation of uncertainties in cases of correlated errors. Discussed are techniques especially applicable to ...