Résumé
Equilibrium isotope fractionation is the partial separation of isotopes between two or more substances in chemical equilibrium. Equilibrium fractionation is strongest at low temperatures, and (along with kinetic isotope effects) forms the basis of the most widely used isotopic paleothermometers (or climate proxies): D/H and 18O/16O records from ice cores, and 18O/16O records from calcium carbonate. It is thus important for the construction of geologic temperature records. Isotopic fractionations attributed to equilibrium processes have been observed in many elements, from hydrogen (D/H) to uranium (238U/235U). In general, the light elements (especially hydrogen, boron, carbon, nitrogen, oxygen and sulfur) are most susceptible to fractionation, and their isotopes tend to be separated to a greater degree than heavier elements. Most equilibrium fractionations are thought to result from the reduction in vibrational energy (especially zero-point energy) when a more massive isotope is substituted for a less massive one. This leads to higher concentrations of the massive isotopes in substances where the vibrational energy is most sensitive to isotope substitution, i.e., those with the highest bond force constants. In a reaction involving the exchange of two isotopes, lX and hX, of element "X" in molecules AX and BX, {A^\mathit{l} X} + B^\mathit{h} X {A^\mathit{h} X} + B^\mathit{l} X each reactant molecule is identical to a product except for the distribution of isotopes (i.e., they are isotopologues). The amount of isotopic fractionation in an exchange reaction can be expressed as a fractionation factor: indicates that the isotopes are distributed evenly between AX and BX, with no isotopic fractionation. indicates that hX is concentrated in substance AX, and indicates hX is concentrated in substance BX. α is closely related to the equilibrium constant (Keq): where is the product of the rotational symmetry numbers of the products (right side of the exchange reaction), is the product of the rotational symmetry numbers of the reactants (left side of the exchange reaction), and n is the number of atoms exchanged.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (7)
Partitionnement dans des systèmes multiphasés
Discute de la distribution des matières organiques dans les systèmes multiphasés et présente des scénarios concernant les contaminants atmosphériques, l'estimation de Koc et le retard des contaminants dans les eaux souterraines.
Protéomique et spectrométrie de masse
Explore la spectrométrie de masse des protéines, les techniques de protéomique, la préparation des échantillons, les méthodes de séparation, les flux de travail quantitatifs, la bioinformatique et les applications en biologie.
Afficher plus
Publications associées (37)
Concepts associés (5)
Mass-independent fractionation
Mass-independent isotope fractionation or Non-mass-dependent fractionation (NMD), refers to any chemical or physical process that acts to separate isotopes, where the amount of separation does not scale in proportion with the difference in the masses of the isotopes. Most isotopic fractionations (including typical kinetic fractionations and equilibrium fractionations) are caused by the effects of the mass of an isotope on atomic or molecular velocities, diffusivities or bond strengths.
Fractionnement isotopique
Un fractionnement isotopique est une différence de comportement entre différents isotopes d'un même élément chimique lors d'un processus physique ou chimique donné, si bien que le ou les rapports isotopiques varient au cours du processus. C'est notamment le cas lors d'un changement d'état inabouti, d'une réaction chimique partielle ou d'un écoulement à travers un milieu poreux : le produit de la transformation partielle a une composition isotopique légèrement différente de celle du matériau de départ.
Oxygène 18
L'oxygène 18, noté O, est l'isotope de l'oxygène dont le nombre de masse est égal à 18 : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . C'est un isotope stable. L'oxygène naturel en contient 0,205 %. L'oxygène 18 est utilisé en radiopharmacologie sous forme d'eau enrichie en espèces pour produire, par bombardement de protons — ions hydrogène — accélérés dans un cyclotron ou dans un accélérateur linéaire, du , lequel est, par exemple, utilisé sous forme de , noté , dans le cadre de la tomographie par émission de positons.
Afficher plus