In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
The name "symplectic group" is due to Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex".
The metaplectic group is a double cover of the symplectic group over R; it has analogues over other local fields, finite fields, and adele rings.
The symplectic group is a classical group defined as the set of linear transformations of a 2n-dimensional vector space over the field F which preserve a non-degenerate skew-symmetric bilinear form. Such a vector space is called a symplectic vector space, and the symplectic group of an abstract symplectic vector space V is denoted Sp(V). Upon fixing a basis for V, the symplectic group becomes the group of 2n × 2n symplectic matrices, with entries in F, under the operation of matrix multiplication. This group is denoted either Sp(2n, F) or Sp(n, F). If the bilinear form is represented by the nonsingular skew-symmetric matrix Ω, then
where MT is the transpose of M. Often Ω is defined to be
where In is the identity matrix. In this case, Sp(2n, F) can be expressed as those block matrices , where , satisfying the three equations:
Since all symplectic matrices have determinant 1, the symplectic group is a subgroup of the special linear group SL(2n, F).