In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, but some manufacturers allow overclocking as long as it is done (relatively) safely.
The purpose of overclocking is to increase the operating speed of a given component. Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics controller, but other components, such as system memory (RAM) or system buses (generally on the motherboard), are commonly involved. The trade-offs are an increase in power consumption (heat), fan noise (cooling), and shortened lifespan for the targeted components. Most components are designed with a margin of safety to deal with operating conditions outside of a manufacturer's control; examples are ambient temperature and fluctuations in operating voltage. Overclocking techniques in general aim to trade this safety margin by setting the device to run in the higher end of the margin, with the understanding that temperature and voltage must be more strictly monitored and controlled by the user. Examples are that operating temperature would need to be more strictly controlled with increased cooling, as the part will be less tolerant of increased temperatures at the higher speeds. Also base operating voltage may be increased to compensate for unexpected voltage drops and to strengthen signalling and timing signals, as low-voltage excursions are more likely to cause malfunctions at higher operating speeds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives. Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling.
Intel Core is a line of streamlined midrange consumer, workstation and enthusiast computer central processing units (CPUs) marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. The lineup of Core processors includes the Intel Core i3, Intel Core i5, Intel Core i7, and Intel Core i9, along with the X-series of Intel Core CPUs.
The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name Athlon, and the immediate successor to the Athlon XP. The second processor (after the Opteron) to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer, it was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the Prescott and Cedar Mill core revisions.
Discusses the challenges and future of neuromorphic computing, comparing digital computers and specialized hardware, such as SpiNNaker and NEST, while exploring the Human Brain Project's Neuromorphic Computing Platform.
Recently, cutting-edge brain-machine interfaces (BMIs) have revealed the potential of decoders such as recurrent neural networks (RNNs) in predicting attempted handwriting [1] or speech [2], enabling rapid communication recovery after paralysis. However, c ...
Drawing from a fieldwork conducted at COMPUTEX Taipei, one of the largest computer expo in the world, this contribution proposes to zoom-in at the level of Graphical Processing Units (GPU) manufacturers and their interactions with computer hardware hobbyis ...
The ability of dataflow circuits to implement dynamic scheduling promises to overcome the conservatism of static scheduling techniques that high-level synthesis tools typically rely on. Yet, the same distributed control mechanism that allows dataflow circu ...