Summary
Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives. Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling. Use of heatsinks cooled by airflow reduces the temperature rise produced by a given amount of heat. Attention to patterns of airflow can prevent the development of hotspots. Computer fans are widely used along with heatsink fans to reduce temperature by actively exhausting hot air. There are also more exotic cooling techniques, such as liquid cooling. All modern day processors are designed to cut out or reduce their voltage or clock speed if the internal temperature of the processor exceeds a specified limit. This is generally known as Thermal Throttling in the case of reduction of clock speeds, or Thermal Shutdown in the case of a complete shutdown of the device or system. Cooling may be designed to reduce the ambient temperature within the case of a computer, such as by exhausting hot air, or to cool a single component or small area (spot cooling). Components commonly individually cooled include the CPU, graphics processing unit (GPU) and the northbridge. Integrated circuits (e.g. CPU and GPU) are the main generators of heat in modern computers. Heat generation can be reduced by efficient design and selection of operating parameters such as voltage and frequency, but ultimately, acceptable performance can often only be achieved by managing significant heat generation. In operation, the temperature of a computer's components will rise until the heat transferred to the surroundings is equal to the heat produced by the component, that is, when thermal equilibrium is reached.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (16)
Related concepts (32)
Computer cooling
Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives. Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling.
Air cooling
Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by making them integral or by attaching them tightly to the object's surface (to ensure efficient heat transfer). In the case of the latter, it is done by using a fan blowing air into or onto the object one wants to cool.
Quiet PC
A quiet, silent or fanless PC is a personal computer that makes very little or no noise. Common uses for quiet PCs include video editing, sound mixing and home theater PCs, but noise reduction techniques can also be used to greatly reduce the noise from servers. There is currently no standard definition for a "quiet PC", and the term is generally not used in a business context, but by individuals and the businesses catering to them.
Show more
Related courses (42)
ME-451: Advanced energetics
Methods for the rational use and conversion of energy in industrial processes : how to analyse the energy usage, calculate the heat recovery by pinch analysis, define heat exchanger network, integrate
CS-728: Topics on Datacenter Design
Modern datacenters with thousands of servers and multi-megawatt power budgets form the backbone of our digital universe. ln this course, we will survey a broad and comprehensive spectrum of datacenter
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Show more
Related lectures (375)
Sideband Cooling
Covers sideband cooling in quantum optics, focusing on motional sidebands, Lamb-Dicke parameter, and cooling cycle.
Heat Recovery in Process Units
Explores heat recovery in process units, emphasizing energy efficiency and the use of heat exchangers to optimize heat distribution.
Advanced Cooling and Power Delivery Technologies
Explores cutting-edge technologies for cooling and powering integrated circuits efficiently and reliably.
Show more
Related MOOCs (5)