Concept

Pearson distribution

Summary
The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics. The Pearson system was originally devised in an effort to model visibly skewed observations. It was well known at the time how to adjust a theoretical model to fit the first two cumulants or moments of observed data: Any probability distribution can be extended straightforwardly to form a location-scale family. Except in pathological cases, a location-scale family can be made to fit the observed mean (first cumulant) and variance (second cumulant) arbitrarily well. However, it was not known how to construct probability distributions in which the skewness (standardized third cumulant) and kurtosis (standardized fourth cumulant) could be adjusted equally freely. This need became apparent when trying to fit known theoretical models to observed data that exhibited skewness. Pearson's examples include survival data, which are usually asymmetric. In his original paper, Pearson (1895, p. 360) identified four types of distributions (numbered I through IV) in addition to the normal distribution (which was originally known as type V). The classification depended on whether the distributions were supported on a bounded interval, on a half-line, or on the whole real line; and whether they were potentially skewed or necessarily symmetric. A second paper (Pearson 1901) fixed two omissions: it redefined the type V distribution (originally just the normal distribution, but now the inverse-gamma distribution) and introduced the type VI distribution. Together the first two papers cover the five main types of the Pearson system (I, III, IV, V, and VI). In a third paper, Pearson (1916) introduced further special cases and subtypes (VII through XII). Rhind (1909, pp. 430–432) devised a simple way of visualizing the parameter space of the Pearson system, which was subsequently adopted by Pearson (1916, plate 1 and pp. 430ff.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.