Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Paramètre de formevignette|La loi Gamma est régie par deux paramètres de formes : k et θ. Un changement d'un de ces paramètres ne change pas seulement la position ou l'échelle de la distribution, mais également sa forme. Dans la théorie des probabilités et en statistiques, un paramètre de forme est un type de paramètre régissant une famille paramétrique de lois de probabilité. Un paramètre de forme est un paramètre d'une loi de probabilité qui n'est pas un paramètre affine, donc ni un paramètre de position ni un paramètre d'échelle.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Loi de LévyEn théorie des probabilités et en statistique, la loi de Lévy, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité continue. En physique, plus précisément en spectroscopie, elle porte le nom de profil de van der Waals et décrit le profil de certaines raies spectrales. Cette loi dépend de deux paramètres : un paramètre de position qui décale le support , et un paramètre d'échelle . Si X suit une loi de Lévy, on notera : .
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Karl PearsonKarl Pearson (–), mathématicien britannique, est un des fondateurs de la statistique moderne appliquée à la biomédecine (biométrie et biostatistique). Il est principalement connu pour avoir développé le coefficient de corrélation et le test du χ2. Il est aussi l'un des fondateurs de la revue Biometrika, dont il a été rédacteur en chef pendant 36 ans et qu'il a hissée au rang des meilleures revues de statistique mathématique. Né le de Fanny Smith et William Pearson, tous deux issus de familles quakers du Yorkshire, Karl Pearson a deux frères et une sœur.
Location–scale familyIn probability theory, especially in mathematical statistics, a location–scale family is a family of probability distributions parametrized by a location parameter and a non-negative scale parameter. For any random variable whose probability distribution function belongs to such a family, the distribution function of also belongs to the family (where means "equal in distribution"—that is, "has the same distribution as").
Loi bêta primeEn théorie des probabilités et en statistique, la loi bêta prime (également connue sous les noms loi bêta II ou loi bêta du second type) est une loi de probabilité continue définie dont le support est et dépendant de deux paramètres de forme. Si une variable aléatoire X suit une loi bêta prime, on notera . Sa densité de probabilité est donnée par : où B est la fonction bêta. Cette loi est une loi de Pearson de type VI. Le mode d'une variable aléatoire de loi bêta prime est .
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.