In algebra, a cubic equation in one variable is an equation of the form
in which a is nonzero.
The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means:
algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots and cube roots. (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not for higher-degree equations, by the Abel–Ruffini theorem.)
trigonometrically
numerical approximations of the roots can be found using root-finding algorithms such as Newton's method.
The coefficients do not need to be real numbers. Much of what is covered below is valid for coefficients in any field with characteristic other than 2 and 3. The solutions of the cubic equation do not necessarily belong to the same field as the coefficients. For example, some cubic equations with rational coefficients have roots that are irrational (and even non-real) complex numbers.
Cubic equations were known to the ancient Babylonians, Greeks, Chinese, Indians, and Egyptians. Babylonian (20th to 16th centuries BC) cuneiform tablets have been found with tables for calculating cubes and cube roots. The Babylonians could have used the tables to solve cubic equations, but no evidence exists to confirm that they did. The problem of doubling the cube involves the simplest and oldest studied cubic equation, and one for which the ancient Egyptians did not believe a solution existed. In the 5th century BC, Hippocrates reduced this problem to that of finding two mean proportionals between one line and another of twice its length, but could not solve this with a compass and straightedge construction, a task which is now known to be impossible.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Lodovico de Ferrari (2 February 1522 – 5 October 1565) was an Italian mathematician best known today for solving the quartic equation. Born in Bologna, Lodovico's grandfather, Bartolomeo Ferrari, was forced out of Milan to Bologna. Lodovico settled in Bologna, and he began his career as the servant of Gerolamo Cardano. He was extremely bright, so Cardano started teaching him mathematics. Ferrari aided Cardano on his solutions for quadratic equations and cubic equations, and was mainly responsible for the solution of quartic equations that Cardano published.
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p⁄q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a0, and q is an integer factor of the leading coefficient an.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Covers the principles and examples of real estate equalization and land allocation.
Explores dominant balance analysis in solving the quintic polynomial, revealing insights into root behavior and the importance of symbolic expressions.
Explores MHD equilibrium and stability, emphasizing energy considerations for determining stability.
A skyrmion state in a noncentrosymmetric helimagnet displays topologically protected spin textures with profound technological implications for high-density information storage, ultrafast spintronics, and effective microwave devices. Usually, its equilibri ...
High-order numerical solvers for conservation laws suffer from Gibbs phenomenon close to discontinuities, leading to spurious oscillations and a detrimental effect on the solution accuracy. A possible strategy to reduce their amplitude aims to add a suitab ...
Toroidal magnetic configurations are widely exploited in industry and scientific research, involving a vast spectrum of applications, such as thermonuclear fusion, particle detectors, SMES systems and medical devices. To properly design and analyse these s ...