Résumé
thumb|right|Une équation cubique admet au plus trois solutions réelles. En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax + bx + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes. Les équations cubiques étaient connues des anciens Babyloniens, Grecs, Chinois, Indiens et Égyptiens. On a trouvé des tablettes babyloniennes () avec, en écriture cunéiforme, des tables de calcul de cubes et de racines cubiques. Les Babyloniens auraient pu utiliser ces tables pour résoudre des équations cubiques, mais on n'en a aucune preuve. Le plus simple et le plus ancien des problèmes du , le problème de la duplication du cube, était considéré par les anciens Égyptiens comme insoluble. Au , Hippocrate réduisit ce problème à celui de trouver deux proportions entre une longueur donnée et son double (a/x = x/y = y/(2a)), mais il ne pouvait pas les construire à la règle et au compas, tâche dont on sait maintenant qu'elle est impossible. On suppose qu'Hippocrate, Ménechme (vers 380 à 320 av. J.-C.) et Archimède (Syracuse, 287 à 212 av. J.-C.) sont arrivés près de résoudre géométriquement le problème de la duplication du cube par intersection de coniques : Ménechme, pour obtenir x tel que x = ab, se ramène à l'intersection de x = ay (parabole) et de xy = ab (hyperbole). Si des historiens des mathématiques comme Reviel Netz mettent en doute le fait que les Grecs pensaient aux équations cubiques comme telles, et pas seulement à des problèmes qui peuvent y conduire, quelques autres, comme Thomas Heath (qui a traduit les œuvres d'Archimède) sont en désaccord, avançant qu'Archimède a non seulement résolu des équations cubiques par intersection de deux coniques, mais a même discuté des conditions pour que les solutions soient au nombre de 0, 1 ou 2. Archimède avait cherché à couper une sphère de rayon r par un plan de façon que le rapport des volumes des deux parties ait une valeur donnée k. Cela donne une équation du : si h est la hauteur d'une des parties, alors h + (4kr)/(k + 1) = 3rh.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.