In the mathematical theory of artificial neural networks, universal approximation theorems are results that put limits on what neural networks can theoretically learn, i.e. that establish the density of an algorithmically generated class of functions within a given function space of interest. Typically, these results concern the approximation capabilities of the feedforward architecture on the space of continuous functions between two Euclidean spaces, and the approximation is with respect to the compact convergence topology. What must be stressed, is that while some functions can be arbitrarily well approximated in a region, the proofs do not apply outside of the region, i.e. the approximated functions do not extrapolate outside of the region. That applies for all non-periodic activation functions, i.e. what's in practice used and most proofs assume. However, there are also a variety of results between non-Euclidean spaces and other commonly used architectures and, more generally, algorithmically generated sets of functions, such as the convolutional neural network (CNN) architecture, radial basis functions, or neural networks with specific properties. Most universal approximation theorems can be parsed into two classes. The first quantifies the approximation capabilities of neural networks with an arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded width" case). Universal approximation theorems imply that neural networks can represent a wide variety of interesting functions with appropriate weights. On the other hand, they typically do not provide a construction for the weights, but merely state that such a construction is possible.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Show more
Related lectures (52)
Kernel Methods: Neural Networks
Covers the fundamentals of neural networks, focusing on RBF kernels and SVM.
Neural Networks: Training and Activation
Explores neural networks, activation functions, backpropagation, and PyTorch implementation.
Feed-forward Networks
Introduces feed-forward networks, covering neural network structure, training, activation functions, and optimization, with applications in forecasting and finance.
Show more
Related publications (67)
Related concepts (8)
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Convolutional neural network
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
Residual neural network
A Residual Neural Network (a.k.a. Residual Network, ResNet) is a deep learning model in which the weight layers learn residual functions with reference to the layer inputs. A Residual Network is a network with skip connections that perform identity mappings, merged with the layer outputs by addition. It behaves like a Highway Network whose gates are opened through strongly positive bias weights. This enables deep learning models with tens or hundreds of layers to train easily and approach better accuracy when going deeper.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.