Summary
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space (often ) or free modules (often ) are generally considered. For all the problems below, assume that we are given (in addition to other more specific inputs) a basis for the vector space V and a norm N. The norm usually considered is the Euclidean norm L2. However, other norms (such as Lp) are also considered and show up in a variety of results. Let denote the length of the shortest non-zero vector in the lattice L, that is, In the SVP, a basis of a vector space V and a norm N (often L2) are given for a lattice L and one must find the shortest non-zero vector in V, as measured by N, in L. In other words, the algorithm should output a non-zero vector v such that . In the γ-approximation version SVPγ, one must find a non-zero lattice vector of length at most for given . The exact version of the problem is only known to be NP-hard for randomized reductions. By contrast, the corresponding problem with respect to the uniform norm is known to be NP-hard. To solve the exact version of the SVP under the Euclidean norm, several different approaches are known, which can be split into two classes: algorithms requiring superexponential time () and memory, and algorithms requiring both exponential time and space () in the lattice dimension.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.