Summary
Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the binding of Ca2+ is required for the activation of calmodulin. Once bound to Ca2+, calmodulin acts as part of a calcium signal transduction pathway by modifying its interactions with various target proteins such as kinases or phosphatases. Calmodulin is a small, highly conserved protein that is 148 amino acids long (16.7 kDa). The protein has two approximately symmetrical globular domains (the N- and C- domains) each containing a pair of EF hand motifs separated by a flexible linker region for a total of four Ca2+ binding sites, two in each globular domain. In the Ca2+-free state, the helices that form the four EF-hands are collapsed in a compact orientation, and the central linker is disordered; in the Ca2+-saturated state, the EF-hand helices adopt an open orientation roughly perpendicular to one another, and the central linker forms an extended alpha-helix in the crystal structure, but remains largely disordered in solution. The C-domain has a higher binding affinity for Ca2+ than the N-domain. Calmodulin is structurally quite similar to troponin C, another Ca2+-binding protein containing four EF-hand motifs. However, troponin C contains an additional alpha-helix at its N-terminus, and is constitutively bound to its target, troponin I. It therefore does not exhibit the same diversity of target recognition as does calmodulin. Calmodulin's ability to recognize a tremendous range of target proteins is due in large part to its structural flexibility. In addition to the flexibility of the central linker domain, the N- and C-domains undergo open-closed conformational cycling in the Ca2+-bound state. Calmodulin also exhibits great structural variability, and undergoes considerable conformational fluctuations, when bound to targets.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.