vignette|Structure d'une calmoludine humaine ().
La calmoduline (CaM, abréviation pour calcium-modulated protein) est une calciprotéine ubiquitaire, capable de s'associer aux ions calcium présents dans le milieu cellulaire. Elle possède en effet quatre motifs en main EF, chacun étant capable de s'associer avec un atome de calcium.
Elle comprend constituant deux sous-unités globulaires.
La liaison avec l'ion calcium induit un changement de conformation de la protéine et forme un complexe calcium-calmoduline (Ca2+-CaM). Ce complexe permet l'activation, par changement de conformation, de nombreuses protéines, dont l'adénylate cyclase.
Elle fait partie de plusieurs canaux ioniques modulés par le calcium, dont le KCNQ1, canal potassique dont la dysfonction provoque certains troubles du rythme cardiaque. Le complexe Ca2+/calmoduline assure la régulation de la protéine kinase Ca2+/calmoduline-dépendante.
La plupart des calmodulines sont capables de fixer quatre ions Ca2+ par liaison coopérative.
La calmoduline possède un rôle dans le métabolisme énergétique en se liant à la phosphorylase kinase afin d'activer la glycogénolyse. Ayant par ailleurs une structure homologue à 70 % à celle de la troponine C, elle permet la synchronisation de la contraction musculaire et de la glycogénolyse.
Dans une microvillosité, le faisceau serré de microfilaments est lié à la membrane cytoplasmique sur toute sa longueur par la myosine de type I associée à la calmoduline, formant ainsi des ponts protéiques.
La calmoduline humaine est codée par trois gènes, CALM1, CALM2 et CALM3, respectivement situés sur les chromosomes 14, 2 et 19.
Les mutations d'un des gènes peuvent provoquer des troubles du rythme cardiaque graves chez l'enfant.
Associée au peptide synthétique M13 et à deux protéines fluorescentes compatibles avec le phénomène de FRET (par exemple YFP et CFP), elle constitue une protéine synthétique dite « Caméléon » en raison du changement de couleur lié à la fixation du calcium.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
La signalisation cellulaire est un système complexe de communication qui régit les processus fondamentaux des cellules et coordonne leur activité. La capacité des cellules à percevoir leur micro-environnement et à y répondre correctement est à la base de leur développement et de celui des organismes multicellulaires, de la cicatrisation et du système immunitaire, ainsi que de l'homéostasie tissulaire normale. Des dysfonctionnements dans le traitement de l'information cellulaire peuvent être responsables de maladies telles que le cancer, les maladies auto-immunes et le diabète.
Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many enzymes require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.
Les muscles squelettiques sont les muscles sous contrôle volontaire du système nerveux central. Le corps humain comprend environ 570 muscles présents chez tous les individus sains. Leur corps contient des vaisseaux sanguins, des nerfs, des organes sensoriels, du tissu conjonctif commun, et des cellules musculaires. En microscopie photonique (ou optique), ils présentent une double striation longitudinale et transversale. La science du muscle est la myologie. Les myoblastes sont les cellules précurseurs des muscles.
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Explore différentes formes de plasticité synaptique et les mécanismes qui les sous-tendent, en mettant l'accent sur le rôle du calcium dans l'induction et le maintien des changements plastiques.
Explore des outils à lumière et à calcium pour étudier l'activité neuronale, en mettant l'accent sur l'optogénétique et l'ingénierie des protéines de fusion.
Couvre l'évaluation de la stabilité des protéines en utilisant RFP et GFP, la cytométrie de flux, la mutagénèse, les rapporteurs de calcium et les expériences CRISPR-Cas9.
The growing use of aptamers as target recognition elements in label-free biosensing necessitates corresponding transducers that can be used in relevant environments. While popular in many fields, capacitive sensors have seen relatively little, but growing ...
Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation ...
Unraveling the complexities of brain function, which is crucial for advancing human health, remains a grand challenge. This endeavor demands precise monitoring of small molecules such as neurotransmitters, the chemical messengers in the brain. In this Pers ...