The lithium–sulfur battery (Li–S battery) is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light (about the density of water). They were used on the longest and highest-altitude unmanned solar-powered aeroplane flight (at the time) by Zephyr 6 in August 2008. Lithium–sulfur batteries may displace lithium-ion cells because of their higher energy density and reduced cost. This is due to the use of sulfur instead of cobalt, a common element in lithium-ion batteries. Li–S batteries offer specific energies on the order of 550 Wh/kg, while lithium-ion batteries are in the range of 150260 Wh/kg. Li–S batteries with up to 1,500 charge and discharge cycles were demonstrated in 2017, but cycle life tests at commercial scale and with lean electrolyte have not been completed. As of early 2021, none were commercially available. Issues that have slowed acceptance include the polysulfide "shuttle" effect that is responsible for the progressive leakage of active material from the cathode, resulting in too-few recharge cycles. Also, sulfur cathodes have low conductivity, requiring extra mass for a conducting agent in order to exploit the contribution of active mass to the capacity. Volume expansion of the sulfur cathode during S to Li_2S conversion and the large amount of electrolyte needed are also issues. LiS batteries were invented in the 1960s, when Herbert and Ulam patented a primary battery employing lithium or lithium alloys as anodic material, sulfur as cathodic material and an electrolyte composed of aliphatic saturated amines. A few years later the technology was improved by the introduction of organic solvents as PC, DMSO and DMF yielding a 2.35-2.5 V battery. By the end of the 1980s a rechargeable LiS battery was demonstrated employing ethers, in particular DOL, as the electrolyte solvent. In 2020 Manthiram identified the critical parameters needed for achieving commercial acceptance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
ENG-410: Energy supply, economics and transition
This course examines energy systems from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the energy demand, and how
CH-450: Solid state chemistry and energy applications
You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl
Related lectures (33)
Mini Segway Challenge
Explores the Mini Segway Challenge, covering mechanical design, electronic components, and PID implementation for motor control.
Sulfur and Nitrogen Cycles
Explores the environmental significance of sulfur and nitrogen cycles, including key microbial processes and organisms involved.
Energy Storage Technologies: SMES, Superconductivity, and Lithium-Ion Batteries
Explores the significance of SMES systems, superconductivity, and lithium-ion batteries, highlighting their roles in energy storage and global sustainability.
Show more
Related publications (154)

Flexible free-standing Fe-CoP-NAs/CC nanoarrays for high-performance full lithium-ion batteries

Kangning Zhao, Chen Huang

In this study, a flexible, free-standing Fe -doped CoP nanoarrays electrode for superior lithium -ion storage has been successfully fabricated. The electrode combines the advantages of a Fe -doping and a flexible carbon cloth (CC) support, resulting in a h ...
Academic Press Inc Elsevier Science2024

A pre-fatigue training strategy to stabilize LiCoO2 at high voltage

Lei Zhang, Kangning Zhao, Rui Xia

Layered cathodes are among the most promising cathodes for high-energy-density Li-ion batteries, yet hindered by the structural degradation from both bulk strain and surface oxygen loss at high voltage (above 4.5 V). Herein, we report a pre-fatigue trainin ...
Cambridge2024

Electrochemical devices and computer science: water/thermal management of proton exchange membrane fuel cells and electrolyzers in different scales

Hossein Pourrahmani

The current restrictions on the registration of combustion engines in different countries and the harmful impacts of fossil fuels on the environment and human health have motivated decision-makers to use batteries and/or fuel cells as alternatives for comb ...
EPFL2024
Show more
Related concepts (6)
Electric battery
A battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy.
Sodium–sulfur battery
A sodium–sulfur battery is a type of molten-salt battery that uses liquid sodium and liquid sulfur electrodes. This type of battery has a similar energy density to lithium-ion batteries, and is fabricated from inexpensive and non-toxic materials. However, due to the high operating temperature required (usually between 300 and 350 °C), as well as the highly corrosive and reactive nature of sodium and sodium polysulfides, these batteries are primarily suited for stationary energy storage applications, rather than for use in vehicles.
Molten-salt battery
Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating. Rechargeable liquid-metal batteries are used for industrial power backup, special electric vehicles and for grid energy storage, to balance out intermittent renewable power sources such as solar panels and wind turbines.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.