In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse (ellipse that touches the triangle at its vertices) whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.
The area of the Steiner ellipse equals the area of the triangle times and hence is 4 times the area of the Steiner inellipse. The Steiner ellipse has the least area of any ellipse circumscribed about the triangle.
The Steiner ellipse is the scaled Steiner inellipse (factor 2, center is the centroid). Hence both ellipses are similar (have the same eccentricity).
A Steiner ellipse is the only ellipse, whose center is the centroid of a triangle and contains the points . The area of the Steiner ellipse is -fold of the triangle's area.
Proof
A) For an equilateral triangle the Steiner ellipse is the circumcircle, which is the only ellipse, that fulfills the preconditions. The desired ellipse has to contain the triangle reflected at the center of the ellipse. This is true for the circumcircle. A conic is uniquely determined by 5 points. Hence the circumcircle is the only Steiner ellipse.
B) Because an arbitrary triangle is the affine image of an equilateral triangle, an ellipse is the and the centroid of a triangle is mapped onto the centroid of the image triangle, the property (a unique circumellipse with the centroid as center) is true for any triangle.
The area of the circumcircle of an equilateral triangle is -fold of the area of the triangle. An affine map preserves the ratio of areas. Hence the statement on the ratio is true for any triangle and its Steiner ellipse.
An ellipse can be drawn (by computer or by hand), if besides the center at least two conjugate points on conjugate diameters are known.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. Suppose A, B, C are distinct non-collinear points, and let △ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle ∠BAC at vertex A, and similarly for B and C as angles in △ABC. Let the sidelengths of △ABC.
In geometry, the trilinear coordinates x : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.
In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Time to collision (TTC) is a key indicator of human locomotion, encompassing both pedestrian and vehicular traffic. Applications of the TTC concept span a wide spectrum from safety to traffic flow dynamics. However, there exists no generic formulation for ...
2023
,
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
Les Ulis Cedex A2023
,
Diffractive zone plates have a wide range of applications from focusing x-ray to extreme UV radiation. The Gabor zone plate, which suppresses the higher-order foci to a pair of conjugate foci, is an attractive alternative to the conventional Fresnel zone p ...