La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Les conceptions géométriques connaissent, depuis les travaux d'Euclide, des évolutions suivant trois axes principaux :
pour vérifier les critères de rigueur logique actuels, la définition axiomatique subit de profonds changements, l'objet mathématique restant néanmoins le même ;
pour ne plus se limiter aux dimensions deux et trois et pour permettre l'élaboration d'une théorie plus puissante, un modèle algébrique de la géométrie est envisagé. L'espace euclidien est maintenant défini comme un espace vectoriel ou affine réel de dimension finie muni d'un produit scalaire ;
enfin, la structure géométrique euclidienne n'est plus la seule envisageable ; il est établi qu'il existe d'autres géométries cohérentes.
Plus de après sa naissance, l'espace géométrique euclidien est un outil toujours efficace aux vastes domaines d'applications. À l’exception des échelles cosmiques et microscopiques, l'espace des physiciens reste encore principalement du domaine de la géométrie euclidienne.
Son aspect mathématique est traité de manière didactique dans l'article produit scalaire. L'article se fonde sur la formalisation d'un vecteur à l'aide d'un bipoint, développé dans vecteur. Une approche plus poussée, fondée sur la formalisation axiomatique de l'espace vectoriel est développée dans espace euclidien.
La géométrie euclidienne au sens des Éléments traite du plan et de l'espace ; elle est souvent présentée comme une géométrie « de la règle et du compas ». Les objets considérés sont les points, les segments, les droites, les demi-droites, avec leurs propriétés d'incidence (la règle), ainsi que les cercles (le compas).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
vignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
vignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés.
En géométrie, une figure de sommet d'un sommet donné d'un polytope est, de façon intuitive, l'ensemble des points directement reliés à ce sommet par une arête. Ceci s’applique également aux pavages infinis, ou pavages remplissant l’espace avec des cellules polytopiques. De façon plus précise, une figure de sommet pour un n-polytope est un (n-1)-polytope. Ainsi, une figure de sommet pour un polyèdre est une figure polygonale, et la figure de sommet pour un polychore est une figure polyèdrique.
On désigne généralement par foyer un ou plusieurs points caractéristiques associés à une figure remarquable de géométrie. La définition monofocale d'une conique utilise conjointement un foyer F et une droite D appelée directrice associée. La conique apparaît comme ensemble des points M du plan tels que . Selon la valeur du réel strictement positif e qu'on nomme excentricité, l'ensemble sera une ellipse, une parabole ou une hyperbole. Les points de la parabole sont donc caractérisés par la propriété MF=MH sur le schéma ci-contre, H désignant le projeté orthogonal de M sur D.
vignette|402x402px| Ovales de Cassini :(1) a = 1,1 , c=1 (au dessus),(2) a = c = 1 (au milieu),(3) a = 1, c = 1,05 (au dessous)|gauche En mathématiques, une courbe implicite (en coordonnées cartésiennes) est une courbe plane définie par une équation implicite reliant les deux coordonnées x et y d'un point de . Par exemple, le cercle unité est défini par l'équation implicite . Dans le cas général, une courbe implicite est définie en coordonnées cartésiennes par une équation de la forme où F est une fonction de deux variables.
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
Let F be a family of n pairwise intersecting circles in the plane. We show that the number of lenses, that is convex digons, in the arrangement induced by F is at most 2n - 2. This bound is tight. Furthermore, if no two circles in F touch, then the geometr ...
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axial ...