In physics and continuum mechanics, deformation is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.
A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc.
Strain is related to deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The relation between stress and strain is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain. They exist even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation.
In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
Stress measures and Strain rate
Strain represents the displacement between particles in the body relative to a reference length.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La mécanique des milieux continus, essentielle à la compréhension du travail de l'ingénieur civil, est abordée dans ce cours. Ce cours couvre les notions de contraintes et déformations, les grands pri
Les étudiants comprennent le comportement mécanique de la roche intacte, des joints et des massifs rocheux et savent déterminer les facteurs influençant un projet. Ils savent utiliser les méthodes app
La mécanique des solides déformables est abordée pour déterminer les contraintes et déformations dans divers matériaux isotropes sollicités en traction, compression, cisaillement, torsion et flexion.
In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: where = shear stress is the force which acts is the area on which the force acts = shear strain. In engineering , elsewhere is the transverse displacement is the initial length of the area. The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi).
In structural engineering, deflection is the degree to which a part of a structural element is displaced under a load (because it deforms). It may refer to an angle or a distance. The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations.
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Explores the wave equation for a vibrating string and its numerical solution using finite difference formulas and the Newmark scheme in MATLAB/GNU Octave.
Most codes of practice adopt a semi probabilistic design approach for the dimensioning and assessment of structures. Accordingly, structural safety is ensured by performing limit state verifications using design values determined with adequately calibrated ...
EPFL2024
, ,
Bending-active elastica beam is a structural configuration that is based on the elastic deformation of an initially straight beam. This deformation occurs when horizontal displacements are applied to a sliding support, causing the beam to bend into an arch ...
Several boreholes were drilled for site comparison of a deep geological repository (DGR) in Northern Switzerland. The main target of the exploration program was the >100m thick Opalinus Clay, the designated host rock encountered at approximately 450 to 100 ...