In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber.
The homotopy fiber has a simple description for a continuous map . If we replace by a fibration, then the homotopy fiber is simply the fiber of the replacement fibration. We recall this construction of replacing a map by a fibration:
Given such a map, we can replace it with a fibration by defining the mapping path space to be the set of pairs where and (for ) a path such that . We give a topology by giving it the subspace topology as a subset of (where is the space of paths in which as a function space has the compact-open topology). Then the map given by is a fibration. Furthermore, is homotopy equivalent to as follows: Embed as a subspace of by where is the constant path at . Then deformation retracts to this subspace by contracting the paths.
The fiber of this fibration (which is only well-defined up to homotopy equivalence) is the homotopy fiberwhich can be defined as the set of all with and a path such that and for some fixed basepoint . A consequence of this definition is that if two points of are in the same path connected component, then their homotopy fibers are homotopy equivalent.
Another way to construct the homotopy fiber of a map is to consider the homotopy limitpg 21 of the diagramthis is because computing the homotopy limit amounts to finding the pullback of the diagramwhere the vertical map is the source and target map of a path , soThis means the homotopy limit is in the collection of mapswhich is exactly the homotopy fiber as defined above.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov. A Postnikov system of a path-connected space is an inverse system of spaces with a sequence of maps compatible with the inverse system such that The map induces an isomorphism for every .
In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient where the denotes the disjoint union, and ∼ is the equivalence relation generated by That is, the mapping cylinder is obtained by gluing one end of to via the map . Notice that the "top" of the cylinder is homeomorphic to , while the "bottom" is the space . It is common to write for , and to use the notation or for the mapping cylinder construction.
In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces. Given a map , the mapping cone is defined to be the quotient space of the mapping cylinder with respect to the equivalence relation , .
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This advanced theoretical course introduces students to basic concepts in wave scattering theory, with a focus on scattering matrix theory and its applications, in particular in photonics.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...