In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber.
The homotopy fiber has a simple description for a continuous map . If we replace by a fibration, then the homotopy fiber is simply the fiber of the replacement fibration. We recall this construction of replacing a map by a fibration:
Given such a map, we can replace it with a fibration by defining the mapping path space to be the set of pairs where and (for ) a path such that . We give a topology by giving it the subspace topology as a subset of (where is the space of paths in which as a function space has the compact-open topology). Then the map given by is a fibration. Furthermore, is homotopy equivalent to as follows: Embed as a subspace of by where is the constant path at . Then deformation retracts to this subspace by contracting the paths.
The fiber of this fibration (which is only well-defined up to homotopy equivalence) is the homotopy fiberwhich can be defined as the set of all with and a path such that and for some fixed basepoint . A consequence of this definition is that if two points of are in the same path connected component, then their homotopy fibers are homotopy equivalent.
Another way to construct the homotopy fiber of a map is to consider the homotopy limitpg 21 of the diagramthis is because computing the homotopy limit amounts to finding the pullback of the diagramwhere the vertical map is the source and target map of a path , soThis means the homotopy limit is in the collection of mapswhich is exactly the homotopy fiber as defined above.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This advanced theoretical course introduces students to basic concepts in wave scattering theory, with a focus on scattering matrix theory and its applications, in particular in photonics.
En théorie de l'homotopie, une branche de la topologie algébrique, une tour de Postnikov (ou système de Postnikov) est un objet permettant de reconstruire un espace topologique à partir de ses groupes d'homotopie. Une tour de Postnikov pour un espace X connexe par arcs est un morphisme de X vers une suite d'espaces et d'applications continues, ...→ X →...→ X→ X, tel que chaque application X→X induit des isomorphismes des π pour k ≤ n ; π(X) = 0 pour k > n. Tout CW-complexe connexe possède une telle « tour ».
En mathématiques, le cylindre (mapping cylinder) d'une application continue entre deux espaces topologiques est un espace homotopiquement équivalent à l'espace but et dans lequel l'espace source s'inclut par une cofibration. Si l'espace source est aussi l'espace but, le tore de l'application (mapping torus) est le quotient du cylindre par la relation entre ses extrémités. Le double cylindre d'applications de deux applications continues f : X → Y et f : X → Y est le quotient de la réunion disjointe par la relation d'équivalence : (x, i) ∼ f(x).
En mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application. Soit X et Y deux espaces topologiques et f : X → Y une application continue. Le cône de l'application f ou cofibre homotopique de f, noté C, est l'espace topologique , c'est-à-dire en quotientant la réunion disjointe CX⊔Y par l'identification de chaque élément x de X ⊂ CX avec son image f(x) dans Y.
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...