Phototoxicity, also called photoirritation, is a chemically induced skin irritation, requiring light, that does not involve the immune system. It is a type of photosensitivity.
The skin response resembles an exaggerated sunburn. The involved chemical may enter into the skin by topical administration, or it may reach the skin via systemic circulation following ingestion or parenteral administration. The chemical needs to be "photoactive," which means that when it absorbs light, the absorbed energy produces molecular changes that cause toxicity. Many synthetic compounds, including drug substances like tetracyclines or fluoroquinolones, are known to cause these effects. Surface contact with some such chemicals causes photodermatitis, and many plants cause phytophotodermatitis. Light-induced toxicity is a common phenomenon in humans; however, it also occurs in other animals.
A phototoxic substance is a chemical compound which becomes toxic when exposed to light.
Some medicines: tetracycline antibiotics, sulfonamides, amiodarone, quinolones, psoralen
Many cold pressed citrus essential oils such as bergamot oil
Some plant juices: parsley, lime, and Heracleum mantegazzianum
Porphyrins, a class of natural molecules occurring in the body and accumulating in patients with certain genetic disorders in the building chain of the red blood dye heme: porphyria
Phototoxicity is a quantum chemical phenomenon. Phototoxins are molecules with a conjugated system, often an aromatic system. They have a low-lying excited state that can be reached by excitation with visible light photons. This state can undergo intersystem crossing with neighboring molecules in tissue, converting them to toxic free radicals. These rapidly attack nearby molecules, killing cells. A typical radical is singlet oxygen, produced from regular triplet oxygen. Because free radicals are highly reactive, the damage is limited to the body part illuminated.