In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into its polar line and each line in the plane into its pole. Pole and polar have several useful properties: If a point P lies on the line l, then the pole L of the line l lies on the polar p of point P. If a point P moves along a line l, its polar p rotates about the pole L of the line l. If two tangent lines can be drawn from a pole to the conic section, then its polar passes through both tangent points. If a point lies on the conic section, its polar is the tangent through this point to the conic section. If a point P lies on its own polar line, then P is on the conic section. Each line has, with respect to a non-degenerated conic section, exactly one pole. inversive geometry The pole of a line L in a circle C is a point Q that is the inversion in C of the point P on L that is closest to the center of the circle. Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C. The relationship between poles and polars is reciprocal. Thus, if a point A lies on the polar line q of a point Q, then the point Q must lie on the polar line a of the point A. The two polar lines a and q need not be parallel. There is another description of the polar line of a point P in the case that it lies outside the circle C. In this case, there are two lines through P which are tangent to the circle, and the polar of P is the line joining the two points of tangency (not shown here). This shows that pole and polar line are concepts in the projective geometry of the plane and generalize with any nonsingular conic in the place of the circle C. Correlation (projective geometry) The concepts of a pole is and its polar line were advanced in projective geometry.
Nicolas Grandjean, Denis Martin, Tiankai Zhu