En géométrie euclidienne, la polaire d'un point par rapport à deux droites sécantes du plan est une droite définie par conjugaison harmonique : les deux droites données, la droite joignant le point à leur intersection, et la polaire forment un faisceau harmonique ; le point est appelé pôle (de cette droite). Cette notion se généralise à celle de polaire par rapport à un cercle, puis par rapport à une conique. La relation entre pôle et polaire est en fait projective : elle est conservée par homographie. thumb|Fig. 1. La polaire du point P par rapport au cercle (C) passe par les points de tangence des droites tangentes à (C) menées par P. thumb|Fig. 2. La polaire du point P est la droite (d). On note qu'elle est perpendiculaire à la droite PO (O centre du cercle (C). thumb|Fig. 3. Pôle P de la droite (d) par rapport à la conique (C). La construction, qui résulte également des propriétés du quadrilatère complet, est calquée sur la précédente. Soient (C) une conique (même dégénérée), et P un point du plan. Considérons un point M mobile sur (C). Soit N le deuxième point d'intersection de (MP) et (C). Soit enfin A le point tel que P,A,M,N forment une division harmonique, c'est-à-dire tel que le birapport (PA,MN) vaut -1. On montre que, lorsque M varie, le lieu de A est une droite ou un segment de droite. On appelle polaire de P par rapport à (C) la droite (d) qui porte ce segment. Réciproquement, on dit que P est le pôle de (d) par rapport à (C). Si la conique est formée de deux droites concourantes en O, OP, (d) et les deux droites forment un faisceau harmonique ; si les deux droites sont parallèles, le faisceau formé par la parallèle passant par P et les trois autres droites est harmonique. Si la conique est non dégénérée, toute droite admet un pôle. Dans le cas où (C) est non dégénérée, et si P est extérieur à (C), on peut mener par ce point deux tangentes à la conique. Appelons K et L les points de contact de ces tangentes. Alors, la polaire (d) du point P est la droite (KL) (voir Figure 1 dans le cas d'un cercle).
Nicolas Grandjean, Denis Martin, Tiankai Zhu