Summary
In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X. The notation g ∘ f is read as "g of f ", "g after f ", "g circle f ", "g round f ", "g about f ", "g composed with f ", "g following f ", "f then g", or "g on f ", or "the composition of g and f ". Intuitively, composing functions is a chaining process in which the output of function f feeds the input of function g. The composition of functions is a special case of the composition of relations, sometimes also denoted by . As a result, all properties of composition of relations are true of composition of functions, such as the property of associativity. Composition of functions is different from multiplication of functions (if defined at all), and has some quite different properties; in particular, composition of functions is not commutative. Composition of functions on a finite set: If f = {(1, 1), (2, 3), (3, 1), (4, 2)} , and g = {(1, 2), (2, 3), (3, 1), (4, 2)} , then g ∘ f = {(1, 2), (2, 1), (3, 2), (4, 3)} , as shown in the figure. Composition of functions on an infinite set: If f: R → R (where R is the set of all real numbers) is given by f(x) = 2x + 4 and g: R → R is given by g(x) = x3, then: If an airplane's altitude at time t is a(t), and the air pressure at altitude x is p(x), then (p ∘ a)(t) is the pressure around the plane at time t. The composition of functions is always associative—a property inherited from the composition of relations. That is, if f, g, and h are composable, then f ∘ (g ∘ h) = (f ∘ g) ∘ h.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Cayley's theorem
In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly, for each , the left-multiplication-by-g map sending each element x to gx is a permutation of G, and the map sending each element g to is an injective homomorphism, so it defines an isomorphism from G onto a subgroup of .
Morphism
In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Show more