In quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.
An optical phase diagram can give insight into the properties and behaviors of the system that might otherwise not be obvious. This can allude to qualities of the system that can be of interest to an individual studying an optical system that would be very hard to deduce otherwise. Another use for an optical phase diagram is that it shows the evolution of the state of an optical system. This can be used to determine the state of the optical system at any point in time.
When discussing the quantum theory of light, it is very common to use an electromagnetic oscillator as a model. An electromagnetic oscillator describes an oscillation of the electric field. Since the magnetic field is proportional to the rate of change of the electric field, this too oscillates. Such oscillations describe light. Systems composed of such oscillators can be described by an optical phase space.
Let u(x,t) be a vector function describing a single mode of an electromagnetic oscillator. For simplicity, it is assumed that this electromagnetic oscillator is in vacuum. An example is the plane wave given by
where u0 is the polarization vector, k is the wave vector, the frequency, and AB denotes the dot product between the vectors A and B. This is the equation for a plane wave and is a simple example of such an electromagnetic oscillator. The oscillators being examined could either be free waves in space or some normal mode contained in some cavity.
A single mode of the electromagnetic oscillator is isolated from the rest of the system and examined.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations (see also position and momentum space). The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: and , respectively.
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle.
The recently synthesized Ag3LiIr2O6 has been proposed as a Kitaev magnet in proximity to the quantum spin liquid phase. We explore its microscopic Hamiltonian and magnetic ground state using many-body quantum chemistry methods and exact diagonalization tec ...
An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consi ...
NATURE PORTFOLIO2023
, ,
Motivated by dipolar-coupled artificial spin systems, we present a theoretical study of the classical J(1)-J(2)-J(3) Ising antiferromagnet on the kagome lattice. We establish the ground-state phase diagram of this model for J(1) > |J(2) |, |J(3) | based on ...