Summary
Hardware acceleration is the use of computer hardware designed to perform specific functions more efficiently when compared to software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calculated in software running on a generic CPU can also be calculated in custom-made hardware, or in some mix of both. To perform computing tasks more quickly (or better in some other way), generally one can invest time and money in improving the software, improving the hardware, or both. There are various approaches with advantages and disadvantages in terms of decreased latency, increased throughput and reduced energy consumption. Typical advantages of focusing on software may include more rapid development, lower non-recurring engineering costs, heightened portability, and ease of updating features or patching bugs, at the cost of overhead to compute general operations. Advantages of focusing on hardware may include speedup, reduced power consumption, lower latency, increased parallelism and bandwidth, and better utilization of area and functional components available on an integrated circuit; at the cost of lower ability to update designs once etched onto silicon and higher costs of functional verification, and times to market. In the hierarchy of digital computing systems ranging from general-purpose processors to fully customized hardware, there is a tradeoff between flexibility and efficiency, with efficiency increasing by orders of magnitude when any given application is implemented higher up that hierarchy. This hierarchy includes general-purpose processors such as CPUs, more specialized processors such as GPUs, fixed-function implemented on field-programmable gate arrays (FPGAs), and fixed-function implemented on application-specific integrated circuits (ASICs). Hardware acceleration is advantageous for performance, and practical when the functions are fixed so updates are not as needed as in software solutions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.