In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat group delay (i.e., maximally linear phase response), which preserves the wave shape of filtered signals in the passband. Bessel filters are often used in audio crossover systems.
The filter's name is a reference to German mathematician Friedrich Bessel (1784–1846), who developed the mathematical theory on which the filter is based. The filters are also called Bessel–Thomson filters in recognition of W. E. Thomson, who worked out how to apply Bessel functions to filter design in 1949.
The Bessel filter is very similar to the Gaussian filter, and tends towards the same shape as filter order increases. While the time-domain step response of the Gaussian filter has zero overshoot, the Bessel filter has a small amount of overshoot, but still much less than other common frequency-domain filters, such as Butterworth filters. It has been noted that the impulse response of Bessel–Thomson filters tends towards a Gaussian as the order of the filter is increased.
Compared to finite-order approximations of the Gaussian filter, the Bessel filter has better shaping factor, flatter phase delay, and flatter group delay than a Gaussian of the same order, although the Gaussian has lower time delay and zero overshoot.
A Bessel low-pass filter is characterized by its transfer function:
where is a reverse Bessel polynomial from which the filter gets its name and is a frequency chosen to give the desired cut-off frequency. The filter has a low-frequency group delay of . Since is indeterminate by the definition of reverse Bessel polynomials, but is a removable singularity, it is defined that .
The transfer function of the Bessel filter is a rational function whose denominator is a reverse Bessel polynomial, such as the following:
The reverse Bessel polynomials are given by:
where
There is no standard set attenuation value for Bessel filters, however, −3.0103 dB is a common choice. Some applications may use a higher or lower attenuation, such as −1 dB or −10 dB.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response which does not become exactly zero past a certain point, but continues indefinitely. This is in contrast to a finite impulse response (FIR) system in which the impulse response does become exactly zero at times for some finite , thus being of finite duration. Common examples of linear time-invariant systems are most electronic and digital filters.
In signal processing, group delay and phase delay are two related ways of describing how a signal's frequency components are delayed in time when passing through a linear time-invariant (LTI) system (such as a microphone, coaxial cable, amplifier, loudspeaker, telecommunications system, ethernet cable, digital filter, or analog filter). Phase delay describes the time shift of a sinusoidal component (a sine wave in steady state).
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Provides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
Ce cours aborde la théorie des systèmes linéaires discrets invariants par décalage (LID). Leurs propriétés et caractéristiques fondamentales y sont discutées, ainsi que les outils fondamentaux permett
, , , , ,
Facial paralysis is a highly burdening condition, resulting in a patient's inability to move his mimic musculature on one or both sides of his face. This condition compromises the patient's communication and facial expressions, and thus dramatically reduce ...
We experimentally demonstrate capacity gains of up to 23% under electrical supply power constraints in a long-haul optical fiber cable by optimizing the gain shaping filters using neural networks. ...
In the past few years, analog computing has experienced rapid development but mostly for a single function. Motivated by parallel space-time computing and miniaturization, we show that reconfigurable graphene-based multilayerss offer a promising path towar ...