Concept

FITS

Summary
Flexible Image Transport System (FITS) is an open standard defining a digital useful for storage, transmission and processing of data: formatted as multi-dimensional arrays (for example a 2D image), or tables. FITS is the most commonly used digital in astronomy. The FITS standard was designed specifically for astronomical data, and includes provisions such as describing photometric and spatial calibration information, together with image origin metadata. The FITS format was first standardized in 1981; it has evolved gradually since then, and the most recent version (4.0) was standardized in 2016. FITS was designed with an eye towards long-term archival storage, and the maxim once FITS, always FITS represents the requirement that developments to the format must be backward compatible. is stored in a human-readable ASCII header. The information in this header is designed to calculate the byte offset of some information in the subsequent data unit to support direct access to the data cells. Each FITS file consists of one or more headers containing ASCII s that carry keyword/value pairs, interleaved between data blocks. The keyword/value pairs provide information such as size, origin, coordinates, binary data format, free-form comments, history of the data, and anything else the creator desires: while many keywords are reserved for FITS use, the standard allows arbitrary use of the rest of the name-space. FITS is also often used to store non-image data, such as spectra, photon lists, data cubes, or structured data such as multi-table databases. A FITS file may contain several extensions, and each of these may contain a data object. For example, it is possible to store x-ray and infrared exposures in the same file. The earliest and still most commonly used type of FITS data is an image header/data block. The term 'image' is somewhat loosely applied, as the format supports data arrays of arbitrary dimension—normal image data are usually 2-D or 3-D, with the third dimension representing for example time or the color plane.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.