Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typical binary fission fragment. Ternary fission into three fragments also produces products in the cluster size. The loss of protons from the parent nucleus changes it to the nucleus of a different element, the daughter, with a mass number Ad = A − Ae and atomic number Zd = Z − Ze, where Ae = Ne + Ze. For example: → + This type of rare decay mode was observed in radioisotopes that decay predominantly by alpha emission, and it occurs only in a small percentage of the decays for all such isotopes. The branching ratio with respect to alpha decay is rather small (see the Table below). Ta and Tc are the half-lives of the parent nucleus relative to alpha decay and cluster radioactivity, respectively. Cluster decay, like alpha decay, is a quantum tunneling process: in order to be emitted, the cluster must penetrate a potential barrier. This is a different process than the more random nuclear disintegration that precedes light fragment emission in ternary fission, which may be a result of a nuclear reaction, but can also be a type of spontaneous radioactive decay in certain nuclides, demonstrating that input energy is not necessarily needed for fission, which remains a fundamentally different process mechanistically. Theoretically, any nucleus with Z > 40 for which the released energy (Q value) is a positive quantity, can be a cluster-emitter. In practice, observations are severely restricted to limitations imposed by currently available experimental techniques which require a sufficiently short half-life, Tc < 1032 s, and a sufficiently large branching ratio B > 10−17. In the absence of any energy loss for fragment deformation and excitation, as in cold fission phenomena or in alpha decay, the total kinetic energy is equal to the Q-value and is divided between the particles in inverse proportion with their masses, as required by conservation of linear momentum where Ad is the mass number of the daughter, Ad = A − Ae.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.