Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction. Structural recursion is a recursion method bearing the same relationship to structural induction as ordinary recursion bears to ordinary mathematical induction.
Structural induction is used to prove that some proposition P(x) holds for all x of some sort of recursively defined structure, such as
formulas, lists, or trees. A well-founded partial order is defined on the structures ("subformula" for formulas, "sublist" for lists, and "subtree" for trees). The structural induction proof is a proof that the proposition holds for all the minimal structures and that if it holds for the immediate substructures of a certain structure S, then it must hold for S also. (Formally speaking, this then satisfies the premises of an axiom of well-founded induction, which asserts that these two conditions are sufficient for the proposition to hold for all x.)
A structurally recursive function uses the same idea to define a recursive function: "base cases" handle each minimal structure and a rule for recursion. Structural recursion is usually proved correct by structural induction; in particularly easy cases, the inductive step is often left out. The length and ++ functions in the example below are structurally recursive.
For example, if the structures are lists, one usually introduces the partial order "
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
A hands-on introduction to interactive theorem proving, proofs as programs, dependent types, and to the Coq proof assistant. Come learn how to write bug-free code!
This course focuses on dynamic models of random phenomena, and in particular, the most popular classes of such models: Markov chains and Markov decision processes. We will also study applications in q
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions.
Mathematical induction is a method for proving that a statement is true for every natural number , that is, that the infinitely many cases all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis) and that from each rung we can climb up to the next one (the step). A proof by induction consists of two cases.
We present Leon, a system for developing functional Scala programs annotated with contracts. Contracts in Leon can themselves refer to recursively defined functions. Leon aims to find counterexamples when functions do not meet the specifications, and proof ...