The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are called MHC molecules.
The name of this locus comes from its discovery through the study of transplanted tissue compatibility. Later studies revealed that tissue rejection due to incompatibility is only a facet of the full function of MHC molecules: binding an antigen derived from self-proteins, or from pathogens, and bringing the antigen presentation to the cell surface for recognition by the appropriate T-cells. MHC molecules mediate the interactions of leukocytes, also called white blood cells (WBCs), with other leukocytes or with body cells. The MHC determines donor compatibility for organ transplant, as well as one's susceptibility to autoimmune diseases.
In a cell, protein molecules of the host's own phenotype or of other biologic entities are continually synthesized and degraded. Each MHC molecule on the cell surface displays a small peptide (a molecular fraction of a protein) called an epitope. The presented self-antigens prevent an organism's immune system from targeting its own cells. The presentation of pathogen-derived proteins results in the elimination of the infected cell by the immune system.
Diversity of an individual's self-antigen presentation, mediated by MHC self-antigens, is attained in at least three ways: (1) an organism's MHC repertoire is polygenic (via multiple, interacting genes); (2) MHC expression is codominant (from both sets of inherited alleles); (3) MHC gene variants are highly polymorphic (diversely varying from organism to organism within a species). Sexual selection has been observed in male mice choosing to mate with females with different MHCs. Also, at least for MHC I presentation, there has been evidence of antigenic peptide splicing, which can combine peptides from different proteins, vastly increasing antigen diversity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The adaptive immune system, also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates (the other being the innate immune system). Like the innate system, the adaptive immune system includes both humoral immunity components and cell-mediated immunity components and destroys invading pathogens.
White blood cells, also called leukocytes or leucocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells include three main subtypes; granulocytes, lymphocytes and monocytes. White cells is most preferred rather than the, white blood cells, because, they spend most of their time in the lymph or plasma. All white blood cells are produced and derived from multipotent cells in the bone marrow known as hematopoietic stem cells.
A lymphocyte is a type of white blood cell (leukocyte) in the immune system of most vertebrates. Lymphocytes include T cells (for cell-mediated, cytotoxic adaptive immunity), B cells (for humoral, antibody-driven adaptive immunity), and Innate lymphoid cells (ILCs) ("innate T cell-like" cells involved in mucosal immunity and homeostasis), of which natural killer cells are an important subtype (which functions in cell-mediated, cytotoxic innate immunity).
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
The students acquire advanced level knowledge regarding the functioning of the (vertebrate) immune system. A strong focus is placed on the molecular mechanisms underlying innate and adaptive immune re
Introduction: We have reanalyzed the genomic data of the International Collaboration for the Genomics of HIV (ICGH), centering on HIV-1 Elite Controllers.Methods: We performed a genome-wide Association Study comparing 543 HIV Elite Controllers with 3,272 u ...
Lausanne2023
, , , , , , ,
CD4+T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward ...
CELL PRESS2023
, , , ,
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U( ...