An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ketoses, which have the carbonyl group away from the end of the molecule, and are therefore ketones.
Like most carbohydrates, simple aldoses have the general chemical formula Cn(H2O)n. Because formaldehyde (n=1) and glycolaldehyde (n=2) are not generally considered to be carbohydrates, the simplest possible aldose is the triose glyceraldehyde, which only contains three carbon atoms.
Because they have at least one asymmetric carbon center, all aldoses exhibit stereoisomerism. Aldoses can exist in either a - form or - form. The determination is made based on the chirality of the asymmetric carbon furthest from the aldehyde end, namely the second-last carbon in the chain. Aldoses with alcohol groups on the right of the Fischer projection are -aldoses, and those with alcohols on the left are -aldoses. -aldoses are more common than -aldoses in nature.
Examples of aldoses include glyceraldehyde, erythrose, ribose, glucose and galactose. Ketoses and aldoses can be chemically differentiated through Seliwanoff's test, where the sample is heated with acid and resorcinol. The test relies on the dehydration reaction which occurs more quickly in ketoses, so that while aldoses react slowly, producing a light pink color, ketoses react more quickly and strongly to produce a dark red color.
Aldoses can isomerize to ketoses through the Lobry-de Bruyn-van Ekenstein transformation.
Aldoses are differentiated by the number of carbon atoms in the main chain. The minimum number of carbon atoms in a backbone needed to form a molecule that is still considered a carbohydrate is 3, and carbohydrates with three carbon atoms are called trioses. The only aldotriose is glyceraldehyde, which has one chiral stereocenter with 2 possible enantiomers, - and -glyceraldehyde.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Glyceraldehyde (glyceral) is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colorless, crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerol and aldehyde, as glyceraldehyde is glycerol with one alcohol group oxidized to an aldehyde.
In chemistry, the Fischer projection, devised by Emil Fischer in 1891, is a two-dimensional representation of a three-dimensional organic molecule by projection. Fischer projections were originally proposed for the depiction of carbohydrates and used by chemists, particularly in organic chemistry and biochemistry. The use of Fischer projections in non-carbohydrates is discouraged, as such drawings are ambiguous and easily confused with other types of drawing.
In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is C6H12O6, and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into each other in aqueous solutions. The open-chain form of a hexose, which usually is favored in solutions, has the general structure H–(CHOH)n−1–C(=O)–(CHOH)4−n–H, where n is 1, 2, or 3.
Cell surface oligosaccharides control cell adhesion, fertilization, inflammation, the immune response and metastasis. Their biosynthesis implies sequences of reactions catalysed by glycosidases and glycosyltranferases. Inhibitors of these enzymes are there ...
The radical C-glycosidation of (-)-(1S,4R,5R,6R)-6-endo-chloro-3-methylidene-5-exo-(phenylseleno)-7-oxa bicyclo[2.2.1]heptan-2-one ((-)-4) with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide gave (+)-(1S,3R,4R,5R,6R)-6-endo-chloro-5-exo-(phenylselen ...
2000
, ,
The tremendous isomeric diversity of carbohydrates enables a wide range of their biological functions but makes the identification and study of these molecules difficult. We investigated the ability of intermolecular interactions to communicate structural ...