In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame mass density and isotropic pressure p. Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction. Quark–gluon plasma is the closest known substance to a perfect fluid. In space-positive metric signature tensor notation, the stress–energy tensor of a perfect fluid can be written in the form where U is the 4-velocity vector field of the fluid and where is the metric tensor of Minkowski spacetime. In time-positive metric signature tensor notation, the stress–energy tensor of a perfect fluid can be written in the form where U is the 4-velocity of the fluid and where is the metric tensor of Minkowski spacetime. This takes on a particularly simple form in the rest frame where is the energy density and is the pressure of the fluid. Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory, in particular, quantization, to be applied to fluids. Perfect fluids are used in general relativity to model idealized distributions of matter, such as the interior of a star or an isotropic universe. In the latter case, the equation of state of the perfect fluid may be used in Friedmann–Lemaître–Robertson–Walker equations to describe the evolution of the universe. In general relativity, the expression for the stress–energy tensor of a perfect fluid is written as where U is the 4-velocity vector field of the fluid and where is the inverse metric, written with a space-positive signature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-200: Physics III
The students understand and apply the physics of fluids, and the basics of electromagnetism and electronic schemes
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
PHYS-108: General physics : fluids and electromagnetism
Le cours couvre deux grands chapitres de la physique: l'étude des fluides et l'électromagnétisme. Une introduction aux ondes est également faite pour pouvoir étudier les solutions des équations de l'h
Related concepts (3)
Matter
In classical physics and general chemistry, matter is any substance with mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat.
Lagrangian (field theory)
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
Fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.