thumb|alt=Le tenseur de stress-énergie d'un fluide parfait ne contient que les composants diagonaux. |Le tenseur de stress-énergie d'un fluide parfait ne contient que les composants diagonaux. En mécanique des fluides, un fluide est dit parfait s'il est possible de décrire son mouvement sans prendre en compte les effets de viscosité et de conduction thermique. Le mouvement du fluide est donc adiabatique, décrit par les équations d'Euler. Tous les fluides ont une viscosité (sauf un superfluide, ce qui en pratique ne concerne guère que l'hélium à très basse température et l'intérieur d'une étoile à neutrons). Le fluide parfait ne peut donc être qu'une approximation pour un fluide de viscosité tendant vers zéro, ce qui revient à faire tendre le nombre de Reynolds vers l'infini. Ce type d'approximation fluide parfait n'est cependant pas dénuée d'intérêts, par exemple en aérodynamique (où souvent des nombres de Reynolds très grands sont atteints). Ceci étant, même si dans ces cas d'aérodynamique de hauts Reynolds le fluide peut être considéré comme parfait assez loin des corps étudiés, il subsiste près de ces corps une zone où les effets de la viscosité sont importants, cette zone étant appelée la couche limite. Autrement dit on pourra appliquer l'approximation du fluide parfait à distance suffisante d'un corps (avec utilisation possible du théorème de Bernoulli), tout en calculant par d'autres moyens le comportement du même fluide considéré comme visqueux dans la Couche limite existant à la surface du même corps. Il est alors possible, par des calculs en fluide parfait, de déterminer les lignes de courants ainsi que les vitesses et pressions locales autour du corps considéré. L'écoulement ainsi déterminé s'appelle écoulement potentiel. Cependant, pour rapprocher ces écoulements potentiels des écoulements réels (de fluides visqueux), les aérodynamiciens veillent, au moment de leurs calculs potentiels, à engraisser les corps de l'épaisseur de leur Couche Limite. thumb|left|Écoulement potentiel (soit d'un fluide parfait) autour d'un corps profilé.
Marco Pisano, Valentina Triacca, Melody Swartz, Witold Waldemar Kilarski, Esra Güç
Brice Tanguy Alphonse Lecampion, Carlo Peruzzo