La mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues.
Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Hydrostatique
L'hydrostatique, ou statique des fluides, est l'étude des fluides immobiles. Ce domaine a de nombreuses applications comme la mesure de pression et de masse volumique. Elle offre des explications physiques à de nombreux phénomènes de la vie quotidienne, comme la poussée d’Archimède ou les raisons pour lesquelles la pression atmosphérique change avec l'altitude.
L'hydrostatique est fondamentale pour l'hydraulique, l'ingénierie des équipements de stockage, de transport et d'utilisation des fluides. Elle est également pertinente pour certains aspects de la géophysique ou de l'astrophysique (par exemple, pour comprendre la tectonique des plaques et les anomalies du champ gravitationnel de la Terre), pour la météorologie, la médecine (dans le contexte de la pression artérielle) et de nombreux autres domaines.
La dynamique des fluides, ou hydrodynamique, est une sous-discipline de la mécanique des fluides qui traite de l'écoulement des fluides, soit les liquides ou les gaz en mouvement. La dynamique des fluides offre une structure systématique qui englobe des lois empiriques et semi-empiriques, dérivées de la mesure du débit et utilisées pour résoudre des problèmes pratiques. La solution à un problème de dynamique des fluides implique généralement le calcul de diverses propriétés du fluide, telles que la vitesse, la pression, la densité et la température, en tant que fonctions de l'espace et du temps.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Living organisms evolve in a physical world: their cells respond to mechanics, electricity and light. In this course, we will describe the behavior and function of cells using physical principles.
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Explore la masse, l'élan et les équilibres énergétiques dans la dynamique des fluides, en mettant l'accent sur les forces exercées par les fluides et l'écoulement de l'élan à travers les volumes de contrôle.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
La dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
La simulation des grandes structures de la turbulence (SGS ou en anglais LES pour Large Eddy Simulation) est une méthode utilisée en modélisation de la turbulence. Elle consiste à filtrer les petites échelles qui sont modélisées et en calculant directement les grandes échelles de la cascade turbulente. Cette méthode a été introduite par Joseph Smagorinsky en 1963 et utilisée pour la première fois par James W. Deardoff en 1970. Elle permet de calculer un écoulement turbulent en capturant les grandes échelles pour un coût raisonnable.
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of motion, if there is no additional force to balance it. The resulting force is always directed from the region of higher-pressure to the region of lower-pressure.
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
2024
, , ,
Ionic wind, produced by electrohydrodynamic (EHD) processes, holds promise for efficient airflow generation using minimal power. However, practical applications have been limited by relatively low flow rates. This study introduces a novel prototype device ...
Amsterdam2024
The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...