Summary
Ice–albedo feedback is a positive feedback climate process where a change in the area of ice caps, glaciers, and sea ice alters the albedo and surface temperature of a planet. Ice is very reflective, therefore it reflects far more solar energy back to space than the other types of land area or open water. Ice–albedo feedback plays an important role in global climate change. For instance, at higher latitudes, warmer temperatures melt the ice sheets. However, if warm temperatures decrease the ice cover and the area is replaced by water or land, the albedo would decrease. This increases the amount of solar energy absorbed, leading to more warming. The change in albedo acts to reinforce the initial alteration in ice area leading to more warming. Warming tends to decrease ice cover and hence decrease the albedo, increasing the amount of solar energy absorbed and leading to more warming. In the geologically recent past, the ice–albedo positive feedback has played a major role in the advances and retreats of the Pleistocene (~2.6 Ma to ~10 ka ago) ice sheets. Inversely, cooler temperatures increase ice, which increases albedo, leading to more cooling. Snow– and ice–albedo feedback have a substantial effect on regional temperatures. In particular, the presence of ice cover makes the North Pole and the South Pole colder than they would have been without it. Consequently, recent Arctic sea ice decline is one of the primary factors behind the Arctic warming nearly four times faster than the global average since 1979 (the year when continuous satellite readings of the Arctic sea ice began)., in a phenomenon known as Arctic amplification. Modelling studies show that strong Arctic amplification only occurs during the months when significant sea ice loss occurs, and that it largely disappears when the simulated ice cover is held fixed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.