Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.) Saturation is a characteristic of ferromagnetic and ferrimagnetic materials, such as iron, nickel, cobalt and their alloys. Different ferromagnetic materials have different saturation levels. Saturation is most clearly seen in the magnetization curve (also called BH curve or hysteresis curve) of a substance, as a bending to the right of the curve (see graph at right). As the H field increases, the B field approaches a maximum value asymptotically, the saturation level for the substance. Technically, above saturation, the B field continues increasing, but at the paramagnetic rate, which is several orders of magnitude smaller than the ferromagnetic rate seen below saturation. The relation between the magnetizing field H and the magnetic field B can also be expressed as the magnetic permeability: or the relative permeability , where is the vacuum permeability. The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. Different materials have different saturation levels. For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6–2.2 teslas (T), whereas ferrites saturate at 0.2–0.5 T. Some amorphous alloys saturate at 1.2–1.3 T. Mu-metal saturates at around 0.8 T. Ferromagnetic materials (like iron) are composed of microscopic regions called magnetic domains, that act like tiny permanent magnets that can change their direction of magnetization. Before an external magnetic field is applied to the material, the domains' magnetic fields are oriented in random directions, effectively cancelling each other out, so the net external magnetic field is negligibly small.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
PHYS-310: Solid state physics II
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
PHYS-201(b): General physics: electromagnetism
The course covers the phenomena, concepts and principles of electricity and magnetism illustrating some of their applications. The unity of the electric, magnetic and optical phenomena and the variety
Show more
Related lectures (93)
Permanent Magnets: Hysteresis CycleMOOC: Conversion electromécanique I
Covers the hysteresis cycle of permanent magnets and their sensitivity to temperature.
Magnetic Energy: Saturation and CoenergyMOOC: Conversion electromécanique I
Explores magnetic energy calculation in saturation and introduces magnetic coenergy for force calculations.
Experimental Techniques: Exchange Narrowing
Explains how neighboring spins influence observed line in experiments.
Show more
Related publications (258)

Nonlinear optical diode effect in a magnetic Weyl semimetal

Philip Johannes Walter Moll, Chunyu Guo, Hao Yang

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Nature Portfolio2024

On the Convergence to the Non-equilibrium Steady State of a Langevin Dynamics with Widely Separated Time Scales and Different Temperatures

Nicolas Macris, Emanuele Mingione, Diego Alberici

We study the solution of the two-temperature Fokker-Planck equation and rigorously analyse its convergence towards an explicit non-equilibrium stationary measure for long time and two widely separated time scales. The exponential rates of convergence are e ...
Cham2024

Field-controlled multicritical behavior and emergent universality in fully frustrated quantum magnets

Bruce Normand

Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...
Berlin2024
Show more
Related concepts (20)
Saturable reactor
A saturable reactor in electrical engineering is a special form of inductor where the magnetic core can be deliberately saturated by a direct electric current in a control winding. Once saturated, the inductance of the saturable reactor drops dramatically. This decreases inductive reactance and allows increased flow of the alternating current (AC). Saturable reactors provide a very simple means to remotely and proportionally control the AC through a load such as an incandescent lamp; the AC current is roughly proportional to the direct current (DC) through the control winding.
Magnetic core
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material.
Ferrite (magnet)
A ferrite is a ceramic material made by mixing and firing iron(III) oxide (, rust) with one or more additional metallic elements, such as strontium, barium, manganese, nickel, and zinc. They are ferrimagnetic, meaning they are attracted by magnetic fields and can be magnetized to become permanent magnets. Unlike other ferromagnetic materials, most ferrites are not electrically conductive, making them useful in applications like magnetic cores for transformers to suppress eddy currents.
Show more
Related MOOCs (10)
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.