Résumé
vignette|300x300px|« Perles » de ferrite utilisées pour réduire les parasites électromagnétiques sur des câbles. vignette|Quelques circuits magnétiques en ferrite utilisés dans les transformateurs et les inductances. Le ferrite est une céramique ferromagnétique obtenue par moulage à forte pression et à haute température (>) à partir d’oxyde de fer(III) Fe2O3XO (où X : manganèse, zinc, cobalt, nickel). Il est très utilisé en électronique et permet de mettre en œuvre des applications diverses et variées grâce à ses propriétés. Le ferrite est un matériau très dur, difficile à usiner et assez fragile, de couleur grise à noire. La température de Curie (propriété caractéristique des matériaux magnétiques) de ce matériau est généralement comprise entre 125 et . Ce matériau existe aussi à l’état naturel, par exemple sous forme du minéral ferrite de plomb PbFe12O19, appelé par sa structure magnétoplombite. Il existe surtout un grand nombre de ferrites artificiels. Mentionnons les ferrites au manganèse, les ferrites au nickel et les ferrites au cobalt. Par exemple, sont préparés pour assurer un léger déficit en fer, diminuant drastiquement la présence de Fe(II). Ce fait contribue à obtenir une résistivité de plusieurs échelles de grandeur supérieures à celle des ferrites au manganèse. Une grande résistivité rend négligeable les pertes par courants de Foucault. Les ferrites au nickel sont caractérisés par de faibles pertes à haute fréquence. D'une manière générale, pour des grains assez petits pour ne constituer qu'un seul domaine magnétique, les pertes liées à la présence des défauts à l'intérieur des grains sont faibles. La polarisation est alors établie par rotation, en évitant le mécanisme dissipateur lié au parois de Bloch. Néanmoins, la perméabilité initiale est bien diminuée. Ce sont des aimants synthétiques où le plomb peut être remplacé : Soit par le baryum, pour les applications nécessitant une induction rémanente élevée ; Soit par le strontium, pour les matériaux soumis à un fort champ magnétique démagnétisant.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (283)
Concepts associés (22)
Magnétostriction
La magnétostriction désigne la propriété que possèdent les matériaux ferromagnétiques de se déformer en fonction de l'orientation de leur aimantation, par exemple sous l'influence d'un champ magnétique. Les matériaux ferromagnétiques présentent aussi un effet magnétostrictif inverse, appelé effet magnéto-mécanique, qui se caractérise par la modification de la susceptibilité magnétique, voire de l'aimantation, en présence de contraintes mécaniques dans le matériau.
Saturation (magnetic)
Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.) Saturation is a characteristic of ferromagnetic and ferrimagnetic materials, such as iron, nickel, cobalt and their alloys. Different ferromagnetic materials have different saturation levels.
Aimant aux terres rares
Les aimants permanents faisant appel aux terres rares utilisent une grande partie de l'exploitation minière de terres rares qui sont au cœur d'une compétition économique mondiale. Les aimants permanents représentent 20 % du volume et 72 % de la valeur des différentes utilisations des terres rares en 2018. Les terres rares permettent la miniaturisation d’aimants très performants, ce qui en multiplie les applications.
Afficher plus