In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant.
The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer. It is a basic tool of computer algebra, and is a built-in function of most computer algebra systems. It is used, among others, for cylindrical algebraic decomposition, integration of rational functions and drawing of curves defined by a bivariate polynomial equation.
The resultant of n homogeneous polynomials in n variables (also called multivariate resultant, or Macaulay's resultant for distinguishing it from the usual resultant) is a generalization, introduced by Macaulay, of the usual resultant. It is, with Gröbner bases, one of the main tools of elimination theory.
The resultant of two univariate polynomials A and B is commonly denoted or
In many applications of the resultant, the polynomials depend on several indeterminates and may be considered as univariate polynomials in one of their indeterminates, with polynomials in the other indeterminates as coefficients. In this case, the indeterminate that is selected for defining and computing the resultant is indicated as a subscript: or
The degrees of the polynomials are used in the definition of the resultant. However, a polynomial of degree d may also be considered as a polynomial of higher degree where the leading coefficients are zero. If such a higher degree is used for the resultant, it is usually indicated as a subscript or a superscript, such as or
The resultant of two univariate polynomials over a field or over a commutative ring is commonly defined as the determinant of their Sylvester matrix.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a Sylvester matrix is a matrix associated to two univariate polynomials with coefficients in a field or a commutative ring. The entries of the Sylvester matrix of two polynomials are coefficients of the polynomials. The determinant of the Sylvester matrix of two polynomials is their resultant, which is zero when the two polynomials have a common root (in case of coefficients in a field) or a non-constant common divisor (in case of coefficients in an integral domain).
A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers.
In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations. Classical elimination theory culminated with the work of Francis Macaulay on multivariate resultants, as described in the chapter on Elimination theory in the first editions (1930) of Bartel van der Waerden's Moderne Algebra.
Explores advanced integration techniques such as change of variable and integration by parts to simplify complex integrals and solve challenging integration problems.
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Le cours présente les bases du comportement des structures, de la détermination des efforts qui y agissent et les principes de leur dimensionnement. Le cours est basé sur la résolution des efforts par
Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180 degrees rotation. Thus, crystallographic models of twinning require the determination of the sho ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Let T be a measure-preserving Zℓ-action on the probability space (X,B,μ), let q1,…,qm:R→Rℓ be vector polynomials, and let f0,…,fm∈L∞(X). For any ϵ>0 and multicorrelation sequences of the form α(n)=∫Xf0⋅T⌊q1(n)⌋f1⋯T⌊qm(n)⌋fmdμ we show that there exis ...