Summary
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant. The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer. It is a basic tool of computer algebra, and is a built-in function of most computer algebra systems. It is used, among others, for cylindrical algebraic decomposition, integration of rational functions and drawing of curves defined by a bivariate polynomial equation. The resultant of n homogeneous polynomials in n variables (also called multivariate resultant, or Macaulay's resultant for distinguishing it from the usual resultant) is a generalization, introduced by Macaulay, of the usual resultant. It is, with Gröbner bases, one of the main tools of elimination theory. The resultant of two univariate polynomials A and B is commonly denoted or In many applications of the resultant, the polynomials depend on several indeterminates and may be considered as univariate polynomials in one of their indeterminates, with polynomials in the other indeterminates as coefficients. In this case, the indeterminate that is selected for defining and computing the resultant is indicated as a subscript: or The degrees of the polynomials are used in the definition of the resultant. However, a polynomial of degree d may also be considered as a polynomial of higher degree where the leading coefficients are zero. If such a higher degree is used for the resultant, it is usually indicated as a subscript or a superscript, such as or The resultant of two univariate polynomials over a field or over a commutative ring is commonly defined as the determinant of their Sylvester matrix.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.