Concept

Magnus expansion

In mathematics and physics, the Magnus expansion, named after Wilhelm Magnus (1907–1990), provides an exponential representation of the solution of a first-order homogeneous linear differential equation for a linear operator. In particular, it furnishes the fundamental matrix of a system of linear ordinary differential equations of order n with varying coefficients. The exponent is aggregated as an infinite series, whose terms involve multiple integrals and nested commutators. Given the n × n coefficient matrix A(t), one wishes to solve the initial-value problem associated with the linear ordinary differential equation for the unknown n-dimensional vector function Y(t). When n = 1, the solution simply reads This is still valid for n > 1 if the matrix A(t) satisfies A(t1) A(t2) = A(t2) A(t1) for any pair of values of t, t1 and t2. In particular, this is the case if the matrix A is independent of t. In the general case, however, the expression above is no longer the solution of the problem. The approach introduced by Magnus to solve the matrix initial-value problem is to express the solution by means of the exponential of a certain n × n matrix function Ω(t, t0): which is subsequently constructed as a series expansion: where, for simplicity, it is customary to write Ω(t) for Ω(t, t0) and to take t0 = 0. Magnus appreciated that, since d/dt (eΩ) e−Ω = A(t), using a Poincaré−Hausdorff matrix identity, he could relate the time derivative of Ω to the generating function of Bernoulli numbers and the adjoint endomorphism of Ω, to solve for Ω recursively in terms of A "in a continuous analog of the BCH expansion", as outlined in a subsequent section. The equation above constitutes the Magnus expansion, or Magnus series, for the solution of matrix linear initial-value problem. The first four terms of this series read where [A, B] ≡ A B − B A is the matrix commutator of A and B. These equations may be interpreted as follows: Ω1(t) coincides exactly with the exponent in the scalar (n = 1) case, but this equation cannot give the whole solution.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.